Skip to main content
Log in

Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(i) chromophore and a fullerene electron acceptor unit

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties–including pump–probe transient absorption spectroscopy in the visible and near-infrared region–have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer (3MLLCT) state of the dinuclear rhenium(i) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. The literature on this topic is too vast to be exhaustively quoted. For some examples, see the following papers and the ones in ref. 2 and 3. (a) J. V. Caspar and T. J. Meyer, Application of the Energy Gap Law to Nonradiative, Excited-State Decay, J. Phys. Chem., 1983, 87, 952–957.

    Article  CAS  Google Scholar 

  2. A. Juris, S. Campagna, I. Bidd, J.-M. Lehn and R. Ziessel, Synthesis and Photophysical and Electrochemical Properties of New Halotricarbonyl(polypyridine)rhenium(I) Complexes, Inorg. Chem., 1988, 27, 4007–4011.

    Article  CAS  Google Scholar 

  3. H. Kunkely and A. Vogler, Excited State Properties of Organometallic Compounds of Rhenium in High and Low Oxidation States, Coord. Chem. Rev., 2000, 200–202, 991–1008.

    Google Scholar 

  4. J. G. Vaughan, B. L. Reid, S. Ramchandani, P. J. Wright, S. Muzzioli, B. W. Skelton, P. Raiteri, D. H. Brown, S. Stagni and M. Massi, The Photochemistry of Rhenium(I) Tricarbonyl N-heterocyclic Carbine Complexes, Dalton Trans., 2013, 42, 14100–14114.

    Article  CAS  PubMed  Google Scholar 

  5. A. Kumar, S.-S. Sun and A. J. Lees, Photophysics and Photochemistry of Organometallic Rhenium Diimine Complexes, Top. Organomet. Chem., 2010, 29, 1–35.

    CAS  Google Scholar 

  6. R. Kirgan, B. P. Sullivan and D. P. Rillema, Photochemistry and Photophysics of Coordination Compounds: Rhenium, Top. Curr. Chem., 2007, 281, 45–100.

    Article  CAS  Google Scholar 

  7. T. J. Meyer, Photochemistry of Metal Coordination Complexes: Metal to Ligand Charge Transfer Excited States, Pure Appl. Chem., 1986, 58, 1193–1206.

    Article  CAS  Google Scholar 

  8. G. Tapolsky, R. Duesing and T. J. Meyer, Synthetic Control of Excited-State Properties in Ligand-Bridged Complexes of Rhenium(I). Intramolecular Energy Transfer by an Electron-Transfer/Energy-Transfer Cascade, Inorg. Chem., 1990, 29, 2285–2297.

    Article  CAS  Google Scholar 

  9. K. S. Schanze, D. B. MacQueen, T. A. Perkins and L. A. Cabana, Studies of Intramolecular Electron and Energy Transfer Using the fac-(diimine)ReI(CO)3 Chromophore, Coord. Chem. Rev., 1993, 122, 63.

    Article  CAS  Google Scholar 

  10. Y. Yue, T. Grusenmeyer, Z. Ma, P. Zhang, R. H. Schmehl, D. N. Beratan and I. V. Rubtsov, Full-Electron Ligand-to-Ligand Charge Transfer in a Compact Re(I) Complex, J. Phys. Chem. A, 2014, 118, 10407–10415.

    Article  CAS  PubMed  Google Scholar 

  11. T. Asatani, Y. Nakagawa, Y. Funada, S. Sawa, H. Takeda, T. Morimoto, K. Koike and O. Ishitani, Ring-Shaped Rhenium(I) Multinuclear Complexes: Improved Synthesis and Photoinduced Multielectron Accumulation, Inorg. Chem., 2014, 53, 7170–7180.

    Article  CAS  PubMed  Google Scholar 

  12. J. Hawecker, J.-M. Lehn and R. Ziessel, Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2′-Bipyridine) tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts, Helv. Chim. Acta, 1986, 69, 1990–2012.

    Article  CAS  Google Scholar 

  13. E. Fujita, Photochemical Carbon Dioxide Reduction with Metal Complexes, Coord. Chem. Rev., 1999, 185–186, 373–384.

    Article  Google Scholar 

  14. H. Takeda, K. Koike, H. Inoue and O. Ishitani, Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies, J. Am. Chem. Soc., 2008, 130, 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  15. E. Portenkirchner, K. Oppelt, D. A. M. Egbe, G. Knör and N. S. Sariçiftçi, Electro- and Photo-chemistry of Rhenium and Rhodium Complexes for Carbon Dioxide and Proton Reduction: a Mini Review, Nanomater. Energy, 2013, 2, 134–147.

    Article  Google Scholar 

  16. T. Morimoto, T. Nakajima, S. Sawa, R. Nakanishi, D. Imori and O. Ishitani, CO2 Capture by a Rhenium(I) Complex with the Aid of Triethanolamine, J. Am. Chem. Soc., 2013, 135, 16825–16828.

    Article  CAS  Google Scholar 

  17. J. R. Schoonover, G. F. Strouse, B. D. Dyer, W. D. Bates, P. Chen and T. J. Meyer, Application of Time-Resolved, Step-Scan Fourier Transform Infrared Spectroscopy to Excited-State Electronic Structure in Polypyridyl Complexes of Rhenium(I), Inorg. Chem., 1996, 35, 273–274.

    Article  CAS  PubMed  Google Scholar 

  18. L. C. Abbott, C. J. Arnold, T.-Q. Ye, K. C. Gordon, R. N. Perutz, R. E. Hester and J. N. Moore, Ultrafast Time-Resolved UV-visible and Infrared Absorption Spectroscopy of Binuclear Rhenium(I) Polypyridyl Complexes in Solution, J. Phys. Chem. A, 1998, 102, 1252–1260.

    Article  CAS  Google Scholar 

  19. D. M. Dattelbaum, K. M. Omberg, J. R. Schoonover, R. L. Martin and T. J. Meyer, Application of Time-Resolved Infrared Spectroscopy to Electronic Structure in Metal-To-Ligand Charge-Transfer Excited States, Inorg. Chem., 2002, 41, 6071–6079.

    Article  CAS  PubMed  Google Scholar 

  20. A. Gabrielsson, P. Matousek, M. Towrie, F. Hartl, S. Zalis and A. Vlcek, Excited States of Nitro-Polypyridine Metal Complexes and Their Ultrafast Decay. Time-Resolved IR Absorption, Spectroelectrochemistry, and TD-DFT Calculations of fac-[Re(Cl)(CO)3(5-nitro-1,10-phenanthroline)], J. Phys. Chem. A, 2005, 109, 6147–6153.

    Article  CAS  PubMed  Google Scholar 

  21. V. Balzani, P. and A. Juris, Photochemistry and Photophysics. Concepts, Research, Applications, Wiley-VCH, Weinheim, 2014.

    Google Scholar 

  22. M. Chergui, On the Interplay between Charge, Spin and Structural Dynamics In Transition Metal Complexes, Dalton Trans., 2012, 41, 13022–13029.

    Article  CAS  PubMed  Google Scholar 

  23. A. M. Blanco-Rodriguez, H. Kvapilova, J. Sykora, M. Towrie, C. Nervi, G. Volpi, S. Zalis and A. Vlcek, Photophysics of Singlet and Triplet Intraligand Excited States in [ReCl(CO)3(1-(2-pyridyl)-imidazo[1,5-α]pyridine)] Complexes, J. Am. Chem. Soc., 2014, 136, 5963–5973.

    Article  CAS  PubMed  Google Scholar 

  24. D. Donghi, G. D’Alfonso, M. Mauro, M. Panigati, P. Mercandelli, A. Sironi, P. Mussini and L. D’Alfonso, A New Class of Luminescent Tricarbonyl Rhenium(I) Complexes Containing Bridging 1,2-Diazine Ligands: Electrochemical, Photophysical, and Computational Characterization, Inorg. Chem., 2008, 28, 4243–4255.

    Article  CAS  Google Scholar 

  25. M. Panigati, M. Mauro, D. Donghi, P. Mercandelli, P. Mussini, L. De Cola and G. D’Alfonso, Luminescent dinuclear rhenium(I) complexes containing bridging 1,2-diazine ligands: Photophysical properties and application, Coord. Chem. Rev., 2012, 256, 1621–1643.

    Article  CAS  Google Scholar 

  26. M. Mauro, M. E. Quartapelle Procopio, Y. Sun, C. H. Chien, D. Donghi, M. Panigati, P. Mercandelli, P. Mussini, G. D’Alfonso and L. De Cola, Highly Emitting Neutral Dinuclear Rhenium Complexes as Phosphorescent Dopants for Electroluminescent Devices, Adv. Funct. Mater., 2009, 19, 2607–2614.

    Article  CAS  Google Scholar 

  27. E. Quartapelle Procopio, M. Mauro, M. Panigati, D. Donghi, P. Mercandelli, A. Sironi, G. D’Alfonso and L. De Cola, Highly Emitting Concomitant Polymorphic Crystals of a Dinuclear Rhenium Complex, J. Am. Chem. Soc., 2010, 132, 14397–14399.

    Article  CAS  PubMed  Google Scholar 

  28. M. Mauro, C.-H. Yang, C.-Y. Shin, M. Panigati, C.-H. Chang, G. D’Alfonso and L. De Cola, Phosphorescent Organic Light-Emitting Diodes with Outstanding External Quantum Efficiency using Dinuclear Rhenium Complexes as Dopants, Adv. Mater., 2012, 24, 2054–2058.

    Article  CAS  PubMed  Google Scholar 

  29. E. Ferri, D. Donghi, M. Panigati, G. Prencipe, L. D’Alfonso, I. Zanoni, C. Baldoli, S. Maiorana, G. D’Alfonso and E. Licandro, Luminescent conjugates between dinuclear rhenium(I) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting, Chem. Commun., 2010, 46, 6255–6257.

    Article  CAS  Google Scholar 

  30. C. Mari, M. Panigati, L. D’Alfonso, I. Zanoni, D. Donghi, L. Sironi, M. Collini, S. Maiorana, C. Baldoli, G. D’Alfonso and E. Licandro, Luminescent Conjugates between Dinuclear Rhenium Complexes and Peptide Nucleic Acids (PNA): Synthesis, Photophysical Characterization, and Cell Uptake, Organometallics, 2012, 31, 5918–5928.

    Article  CAS  Google Scholar 

  31. G. Valenti, M. Panigati, A. Boni, G. D’Alfonso, F. Paolucci and L. Prodi, Diazine bridged dinuclear rhenium complex: New molecular material for the CO2 conversion, Inorg. Chim. Acta, 2014, 417, 270–273.

    Article  CAS  Google Scholar 

  32. D. M. Guldi, M. Maggini, E. Menna, G. Scorrano, P. Ceroni, M. Marcaccio, F. Paolucci and S. Roffia, A Photosensitizer Dinuclear Ruthenium Complex: Intramolecular Energy Transfer to a Covalently Linked Fullerene Acceptor, Chem.–Eur. J., 2001, 7, 1597–1605.

    Article  CAS  PubMed  Google Scholar 

  33. C. Luo, M. Fujitsuka, A. Watanabe, O. Ito, L. Gan, Y. Huang and C. H. Huang, Substituent and Solvent Effects on Photoexcited States of Functionalized Fullerene[60], J. Chem. Soc., Faraday Trans., 1998, 94, 527–532.

    Article  CAS  Google Scholar 

  34. M. Prato and M. Maggini, Fulleropyrrolidines: a Family of Full-Fledged Fullerene Derivatives, Acc. Chem. Res., 1998, 31, 519–526.

    Article  CAS  Google Scholar 

  35. B. Albinsson and J. Martensson, Long-Range Electron and Excitation Energy Transfer in Donor–Bridge–Acceptor Systems, J. Photochem. Photobiol., C, 2008, 9, 138–155., and references therein.

    Article  CAS  Google Scholar 

  36. A. Cannizzo, A. M. Blanco-Rodriguez, A. El Nahhas, J. Sebera, S. Zalis, A. Vlcek and M. Chergui, Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl-Bipyridine Complexes, J. Am. Chem. Soc., 2008, 130, 8967–8974.

    Article  CAS  PubMed  Google Scholar 

  37. A. El Nahhas, C. Consani, A. M. Blanco-Rodriguez, K. M. Lancaster, O. Braem, A. Cannizzo, M. Towrie, I. Clark, S. Zalis, M. Chergui and A. Vlcek, Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: Diimine Effects, Inorg. Chem., 2011, 50, 2932–2943.

    Article  PubMed  CAS  Google Scholar 

  38. J. P. Mittal, Excited States and Electron Transfer Reactions of Fullerenes, Pure Appl. Chem., 1995, 67, 103–110.

    Article  CAS  Google Scholar 

  39. D. M. Guldi, G. Torres-Garcia and J. Mattay, Intramolecular Energy Transfer in Fullerene Pyrazine Dyads, J. Phys. Chem. A, 1998, 102, 9679–9685.

    Article  CAS  Google Scholar 

  40. A. Kahnt, J. Karnbratt, L. J. Esdaile, M. Hutin, K. Sawada, H. L. Anderson and B. Albinsson, Temperature Dependence of Charge Separation and Charge Recombination in Porphyrin Oligomer-Fullerene Donor–Acceptor Systems, J. Am. Chem. Soc., 2011, 133, 9863–9871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. M. Kaunisto, P. Vivo, R. K. Dubey, V. I. Chukharev, A. Efimov, N. V. Tkachenko and H. J. Lemmetyinen, Charge-Transfer Dynamics in Poly(3-hexylthiophene):Perylenediimide-C60 Blend Films Studied by Ultrafast Transient Absorption, J. Phys. Chem. C, 2014, 118, 10625–10630.

    Article  CAS  Google Scholar 

  42. For spectroelectrochemistry of other substituted fullerenes, see: L. Kavan and L. Dunsch, Spectroelectrochemistry of Carbon Nanostructures, ChemPhysChem, 2007, 14, 974–998.

    Article  CAS  Google Scholar 

  43. M. Maggini, D. M. Guldi, S. Mondini, G. Scorrano, F. Paolucci, P. Ceroni and S. Roffia, Photoinduced Electron Transfer in a Tris(2,2′-bipyridine)-C60-Ruthenium(II) Dyad: Evidence of Charge Recombination to a Fullerene Excited State, Chem.–Eur. J., 1998, 4, 1992–2000.

    Article  CAS  Google Scholar 

  44. D. Armspach, E. C. Constable, F. Diederich, C. E. Housecroft and J.-F. Nierengarten, Bucky Ligands: Synthesis, Ruthenium(II) Complexes, and Electrochemical Properties, Chem.–Eur. J., 1998, 4, 723–733.

    Article  CAS  Google Scholar 

  45. F. Nastasi, F. Puntoriero, S. Campagna, S. Schergna, M. Maggini, F. Cardinali, B. Delavaux-Nicot and J.-F. Nierengarten, A Luminescent Multicomponent Species Made of Fullerene and Ir(III) Cyclometallated Subunits, Chem. Commun., 2007, 3557–3558.

    Google Scholar 

  46. F. Cardinali, H. Mamlouk, Y. Rio, N. Armaroli and J.-F. Nierengarten, Fullerohelicates: A New Class of Fullerene-containing Supermolecules, Chem. Commun., 2004, 1582–1583.

    Google Scholar 

  47. N. Armaroli, G. Accorsi, D. Felder and J.-F. Nierengarten, Photophysical Properties of the Re(I) and Ru(II) Complexes of a New C60-Substituted Bipyridine Ligand, Chem.–Eur. J., 2002, 8, 2314–2322.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: General procedures, equipments and methods; synthesis and characterization details; ns flash photolysis of 1 and 2; near-infrared fs transient spectrum of 2; global kinetic analysis of 1, comments on the possible presence of diastereoisomers in 1, spectroelectrochemistry of 3. See DOI: 10.1039/c4pp00301b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastasi, F., Puntoriero, F., Natali, M. et al. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(i) chromophore and a fullerene electron acceptor unit. Photochem Photobiol Sci 14, 909–918 (2015). https://doi.org/10.1039/c4pp00301b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00301b

Navigation