Skip to main content
Log in

Charge separation, charge recombination and intersystem crossing in orthogonal naphthalimide–perylene electron donor/acceptor dyad

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We prepared an orthogonal electron donor/acceptor dyad (NI–Py) with perylene (Py) as electron donor and 4-aminonaphthalimide (NI) as an electron acceptor. The molecule adopts orthogonal geometry due to the steric hindrance exerted by the 4-amino substituents on the NI moiety. The photophysical properties of dyad were studied by steady-state UV–Vis absorption and fluorescence spectroscopies, femtosecond/nanosecond transient absorption spectroscopies and DFT computations. Ground state interaction between the NI and Py units is negligible; however, charge separation occurs upon photoexcitation, indicated by the quenching of the fluorescence of the dyad in polar solvents, i.e. fluorescence quantum yield (ΦF) is 61.9% in toluene and ΦF = 0.2% in methanol. Spin–orbit-coupled charge transfer-induced intersystem crossing (SOCT-ISC) was confirmed by femtosecond transient absorption spectroscopy (charge separation takes 1.7 ps and charge recombination takes 6.9 ns, in CH2Cl2). Nanosecond transient absorption spectra indicated the formation of perylene-localized triplet state, and the triplet state lifetime (175 μs) is much longer than that accessed with the heavy atom effect (3-bromoperylene; 16 μs). The singlet oxygen quantum (ΦΔ) yield of the dyad is 2.2% in hexane and 9.5% in dichloromethane. The low SOCT-ISC efficiency as compared to the previously reported analogue (ΦΔ = 80%) is attributed to the mismatch of the 1CT/Tn state energies, and/or the orientation of the NI and Py units, i.e. orthogonal geometry is not sufficient for achieving efficient SOCT-ISC in compact electron donor/acceptor dyads.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2.

Similar content being viewed by others

References

  1. Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). Bodipy dyes in photodynamic therapy. Chemical Society Reviews, 42, 77–88. https://doi.org/10.1039/C2CS35216H.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, J., Wu, W., Sun, J., & Guo, S. (2013). Triplet photosensitizers: from molecular design to applications. Chemical Society Reviews, 42, 5323–5351. https://doi.org/10.1039/C3CS35531D.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, J., Xu, K., Yang, W., Wang, Z., & Zhong, F. (2015). The triplet excited state of bodipy: Formation, modulation and application. Chem. Soc. Rev., 44, 8904–8939. https://doi.org/10.1039/C5CS00364D.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, J., Swords, W. B., Jung, H., Skubi, K. L., Kidd, J. B., Meyer, G. J., et al. (2019). Enantioselective intermolecular excited-state photoreactions using a chiral IR triplet sensitizer: separating association from energy transfer in asymmetric photocatalysis. Journal of the American Chemical Society, 141, 13625–13634. https://doi.org/10.1021/jacs.9b06244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong, R., Chen, K.-K., Wang, P., Zhang, N., Guo, S., Zhang, Z.-M., & Lu, T.-B. (2019). Heavy atom-free keto-di-coumarin as earth-abundant strong visible light-harvesting photosensitizer for efficient photocatalytic hydrogen evolution. Dyes. Pigments, 166, 84–91. https://doi.org/10.1016/j.dyepig.2019.03.019.

    Article  CAS  Google Scholar 

  6. Mahammed, A., Chen, K., Vestfrid, J., Zhao, J., & Gross, Z. (2019). Phosphorus corrole complexes: From property tuning to applications in photocatalysis and triplet–triplet annihilation upconversion. Chem. Sci., 10, 7091–7103. https://doi.org/10.1039/C9SC01463B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agazzi, M. L., Almodovar, V. A. S., Gsponer, N. S., Bertolotti, S., Tomé, A. C., & Durantini, E. N. (2020). Diketopyrrolopyrrole–fullerene C60 architectures as highly efficient heavy atom-free photosensitizers: synthesis, photophysical properties and photodynamic activity. Organic & Biomolecular Chemistry, 18, 1449–1461. https://doi.org/10.1039/C9OB02487E.

    Article  CAS  Google Scholar 

  8. Wang, Z., Ivanov, M., Gao, Y., Bussotti, L., Foggi, P., Zhang, H., et al. (2020). Spin–orbit charge-transfer intersystem crossing (ISC) in compact electron donor–acceptor dyads: ISC mechanism and application as novel and potent photodynamic therapy reagents. Chemistry—A European Journal, 26, 1091–1102. https://doi.org/10.1002/chem.201904306.

    Article  CAS  Google Scholar 

  9. Qian, M., Hou, W., Chen, D., Li, X., Chen, Q., & Wu, C. (2019). Metalloporphyrin loaded semiconducting polymer dots as potent photosensitizers via triplet-triplet energy transfer. J. Photochem. Photobio, 383, 111988. https://doi.org/10.1016/j.jphotochem.2019.111988.

    Article  CAS  Google Scholar 

  10. Majumdar, P., Nomula, R., & Zhao, J. (2014). Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J. Mater. Chem. C, 2, 5982–5997. https://doi.org/10.1039/C4TC00659C.

    Article  CAS  Google Scholar 

  11. Wong, W. Y., & Ho, C. L. (2006). Di-, oligo- and polymetallaynes: syntheses, photophysics, structures and applications. Coordination Chemistry Reviews, 250, 2627–2690.

    Article  CAS  Google Scholar 

  12. Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews, 254, 2560–2573. https://doi.org/10.1016/j.ccr.2010.01.003.

    Article  CAS  Google Scholar 

  13. Zhao, J., Ji, S., & Guo, H. (2011). Triplet–triplet annihilation based upconversion: From triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv., 1, 937–950. https://doi.org/10.1039/C1RA00469G.

    Article  CAS  Google Scholar 

  14. Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: Advances and applications. Chemical Reviews, 115, 395–465. https://doi.org/10.1021/cr400478f.

    Article  CAS  PubMed  Google Scholar 

  15. Lv, W., Li, Y., Li, F., Lan, X., Zhang, Y., Du, L., et al. (2019). Upconversion-like photolysis of bodipy-based prodrugs via a one-photon process. Journal of the American Chemical Society, 141, 17482–17486. https://doi.org/10.1021/jacs.9b09034.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, K., Ohashi, W., Inafuku, K., Shiotsu, S., & Chujo, Y. (2020). Development of the sensitizer for generating higher-energy photons under diluted condition via the triplet-triplet annihilation-supported upconversion. Dyes. Pigments, 172, 107821. https://doi.org/10.1016/j.dyepig.2019.107821.

    Article  CAS  Google Scholar 

  17. Wang, Z., & Zhao, J. (2017). Bodipy–anthracene dyads as triplet photosensitizers: effect of chromophore orientation on triplet-state formation efficiency and application in triplet–triplet annihilation upconversion. Organic Letters, 19, 4492–4495. https://doi.org/10.1021/acs.orglett.7b02047.

    Article  CAS  PubMed  Google Scholar 

  18. Ye, C., Zhou, L., Wang, X., & Liang, Z. (2016). Photon upconversion: From two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Physical Chemistry Chemical Physics, 18, 10818–10835. https://doi.org/10.1039/C5CP07296D.

    Article  CAS  PubMed  Google Scholar 

  19. Prieto-Montero, R., Sola-Llano, R., Montero, R., Longarte, A., Arbeloa, T., López-Arbeloa, I., et al. (2019). Methylthio bodipy as a standard triplet photosensitizer for singlet oxygen production: a photophysical study. Physical Chemistry Chemical Physics, 21, 20403–20414. https://doi.org/10.1039/C9CP03454D.

    Article  CAS  PubMed  Google Scholar 

  20. 20Y. Wei, Y. Li, M. Zheng, X. Zhou, Y. Zou and C. Yang, Simultaneously high upconversion efficiency and large anti-stokes shift by using Os(II) complex dyad as triplet photosensitizer, Adv. Opt.l Mater., 2020, 8, 1902157. DOI:https://doi.org/10.1002/adom.201902157

  21. Islangulov, R. R., Lott, J., Weder, C., & Castellano, F. N. (2007). Noncoherent low-power upconversion in solid polymer films. Journal of the American Chemical Society, 129, 12652–12653. https://doi.org/10.1021/ja075014k.

    Article  CAS  PubMed  Google Scholar 

  22. Mahmood, Z., Taddei, M., Rehmat, N., Bussotti, L., Doria, S., Guan, Q., et al. (2020). Color-tunable delayed fluorescence and efficient spin–orbit charge transfer intersystem crossing in compact carbazole-anthracene-bodipy triads employing the sequential electron transfer approach. Journal of Physical Chemistry C, 124, 5944–5957. https://doi.org/10.1021/acs.jpcc.9b11687.

    Article  CAS  Google Scholar 

  23. Feng, Y., Cheng, J., Zhou, L., Zhou, X., & Xiang, H. (2012). Ratiometric optical oxygen sensing: a review in respect of material design. Analyst, 137, 4885–4901. https://doi.org/10.1039/C2AN35907C.

    Article  CAS  PubMed  Google Scholar 

  24. You, Y., & Nam, W. (2012). Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electroluminescence. Chemical Society Reviews, 41, 7061–7084. https://doi.org/10.1039/C2CS35171D.

    Article  CAS  PubMed  Google Scholar 

  25. L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti, in Photochemistry and photophysics of coordination compounds, eds. V. Balzani and S. Campagna, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 143−203.

  26. J. A. G. Williams, in Photochemistry and photophysics of coordination compounds II , eds. V. Balzani and S. Campagna, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 205−268.

  27. Sun, J., Zhong, F., Yi, X., & Zhao, J. (2013). Efficient enhancement of the visible-light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with bodipy and applications in photooxidation and triplet–triplet annihilation upconversion. Inorganic Chemistry, 52, 6299–6310. https://doi.org/10.1021/ic302210b.

    Article  CAS  PubMed  Google Scholar 

  28. Che, Y., Yuan, X., Cai, F., Zhao, J., Zhao, X., Xu, H., & Liu, L. (2019). Bodipy−corrole dyad with truxene bridge: Photophysical properties and application in triplet−triplet annihilation upconversion. Dyes. Pigments, 171, 107756. https://doi.org/10.1016/j.dyepig.2019.107756.

    Article  CAS  Google Scholar 

  29. Lu, Y., Conway-Kenny, R., Twamley, B., McGoldrick, N., Zhao, J., & Draper, S. M. (2017). 1,10-phenanthroline ruthenium(II) complexes as model systems in the search for high-performing triplet photosensitisers: Addressing ligand versus metal effects. ChemPhotoChem, 1, 544–552. https://doi.org/10.1002/cptc.201700158.

    Article  CAS  Google Scholar 

  30. Cui, X., Zhao, J., Mohmood, Z., & Zhang, C. (2016). Accessing the long-lived triplet excited states in transition-metal complexes: Molecular design rationales and applications. Chemical Record, 16, 173–188. https://doi.org/10.1002/tcr.201500237.

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, V.-N., Qi, S., Kim, S., Kwon, N., Kim, G., Yim, Y., et al. (2019). An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. Journal of the American Chemical Society, 141, 16243–16248. https://doi.org/10.1021/jacs.9b09220.

    Article  CAS  PubMed  Google Scholar 

  32. Li, X., Kolemen, S., Yoon, J., & Akkaya, E. U. (2017). Activatable photosensitizers: agents for selective photodynamic therapy. Advanced Functional Materials, 27, 1604053. https://doi.org/10.1002/adfm.201604053.

    Article  CAS  Google Scholar 

  33. Wang, J., Hou, Y., Lei, W., Zhou, Q., Li, C., Zhang, B., & Wang, X. (2012). DNA photocleavage by a cationic bodipy dye through both singlet oxygen and hydroxyl radical: New insight into the photodynamic mechanism of bodipys. ChemPhysChem, 13, 2739–2747. https://doi.org/10.1002/cphc.201200224.

    Article  CAS  PubMed  Google Scholar 

  34. Verhoeven, J. (2006). On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states. Journal of Photochemistry and Photobiology C, 7, 40–60. https://doi.org/10.1016/j.jphotochemrev.2006.04.001.

    Article  CAS  Google Scholar 

  35. Vauthey, E. (2012). Photoinduced symmetry-breaking charge separation. ChemPhysChem, 13, 2001–2011. https://doi.org/10.1002/cphc.201200106.

    Article  CAS  PubMed  Google Scholar 

  36. Verhoeven, J. W., van Ramesdonk, H. J., Groeneveld, M. M., Benniston, A. C., & Harriman, A. (2005). Long-lived charge-transfer states in compact donor–acceptor dyads. Chem Phys Chem, 6, 2251–2260. https://doi.org/10.1002/cphc.200500029.

    Article  CAS  PubMed  Google Scholar 

  37. Gibbons, D. J., Farawar, A., Mazzella, P., Leroy-Lhez, S., & Williams, R. M. (2020). Making triplets from photo-generated charges: observations, mechanisms and theory. Photochemical & Photobiological Sciences, 19, 136–158. https://doi.org/10.1039/C9PP00399A.

    Article  CAS  Google Scholar 

  38. Filatov, M. A. (2020). Heavy-atom-free bodipy photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Organic & Biomolecular Chemistry, 18, 10–27. https://doi.org/10.1039/C9OB02170A.

    Article  CAS  Google Scholar 

  39. Hou, Y., Zhang, X., Chen, K., Liu, D., Wang, Z., Liu, Q., et al. (2019). Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. J. Mater. Chem. C, 7, 12048–12074. https://doi.org/10.1039/C9TC04285G.

    Article  CAS  Google Scholar 

  40. Kc, C. B., Lim, G. N., Nesterov, V. N., Karr, P. A., & D’Souza, F. (2014). Phenothiazine–bodipy–fullerene triads as photosynthetic reaction center models: Substitution and solvent polarity effects on photoinduced charge separation and recombination. Chemistry—A European Journal, 20, 17100–17112. https://doi.org/10.1002/chem.201404863.

    Article  CAS  Google Scholar 

  41. X.-F. Zhang and N. Feng, Attaching naphthalene derivatives onto bodipy for generating excited triplet state and singlet oxygen: tuning pet-based photosensitizer by electron donors, Spectrochim. Acta Part A: Mol. and Biomol. Spectro., 2018, 189, 13−21. DOI:https://doi.org/https://doi.org/10.1016/j.saa.2017.08.005

  42. Tang, G., Sukhanov, A. A., Zhao, J., Yang, W., Wang, Z., Liu, Q., et al. (2019). Red thermally activated delayed fluorescence and the intersystem crossing mechanisms in compact naphthalimide–phenothiazine electron donor/acceptor dyads. Journal of Physical Chemistry C, 123, 30171–30186. https://doi.org/10.1021/acs.jpcc.9b09335.

    Article  CAS  Google Scholar 

  43. Wang, Z., Sukhanov, A. A., Toffoletti, A., Sadiq, F., Zhao, J., Barbon, A., et al. (2019). Insights into the efficient intersystem crossing of bodipy-anthracene compact dyads with steady-state and time-resolved optical/magnetic spectroscopies and observation of the delayed fluorescence. Journal of Physical Chemistry C, 123, 265–274. https://doi.org/10.1021/acs.jpcc.8b10835.

    Article  CAS  Google Scholar 

  44. Dance, Z. E. X., Mi, Q., McCamant, D. W., Ahrens, M. J., Ratner, M. A., & Wasielewski, M. R. (2006). Time-resolved EPR studies of photogenerated radical ion pairs separated by p-phenylene oligomers and of triplet states resulting from charge recombination. The Journal of Physical Chemistry B, 110, 25163–25173. https://doi.org/10.1021/jp063690n.

    Article  CAS  PubMed  Google Scholar 

  45. Dance, Z. E. X., Mickley, S. M., Wilson, T. M., Ricks, A. B., Scott, A. M., Ratner, M. A., & Wasielewski, M. R. (2008). Intersystem crossing mediated by photoinduced intramolecular charge transfer: Julolidine−anthracene molecules with perpendicular π systems. Journal of Physical Chemistry A, 112, 4194–4201. https://doi.org/10.1021/jp800561g.

    Article  CAS  Google Scholar 

  46. Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Savoie, H., Flanagan, K. J., Sy, C., et al. (2017). Generation of triplet excited states via photoinduced electron transfer in meso-anthra-bodipy: Fluorogenic response toward singlet oxygen in solution and in vitro. Journal of the American Chemical Society, 139, 6282–6285. https://doi.org/10.1021/jacs.7b00551.

    Article  CAS  PubMed  Google Scholar 

  47. Hou, Y., Biskup, T., Rein, S., Wang, Z., Bussotti, L., Russo, N., et al. (2018). Spin–orbit charge recombination intersystem crossing in phenothiazine–anthracene compact dyads: effect of molecular conformation on electronic coupling, electronic transitions, and electron spin polarizations of the triplet states. Journal of Physical Chemistry C, 122, 27850–27865. https://doi.org/10.1021/acs.jpcc.8b08965.

    Article  CAS  Google Scholar 

  48. Callaghan, S., Filatov, M. A., Savoie, H., Boyle, R. W., & Senge, M. O. (2019). In vitro cytotoxicity of a library of bodipy-anthracene and -pyrene dyads for application in photodynamic therapy. Photochemical & Photobiological Sciences, 18, 495–504. https://doi.org/10.1039/C8PP00402A.

    Article  CAS  Google Scholar 

  49. Hu, W., Liu, M., Zhang, X.-F., Wang, Y., Wang, Y., Lan, H., & Zhao, H. (2019). Can bodipy-electron acceptor conjugates act as heavy atom-free excited triplet state and singlet oxygen photosensitizers via photoinduced charge separation-charge recombination mechanism? Journal of Physical Chemistry C, 123, 15944–15955. https://doi.org/10.1021/acs.jpcc.9b02961.

    Article  CAS  Google Scholar 

  50. Chen, K., Yang, W., Wang, Z., Iagatti, A., Bussotti, L., Foggi, P., et al. (2017). Triplet excited state of bodipy accessed by charge recombination and its application in triplet–triplet annihilation upconversion. Journal of Physical Chemistry A, 121, 7550–7564. https://doi.org/10.1021/acs.jpca.7b07623.

    Article  CAS  Google Scholar 

  51. Rehmat, N., Toffoletti, A., Mahmood, Z., Zhang, X., Zhao, J., & Barbon, A. (2020). Carbazole-perylenebisimide electron donor/acceptor dyads showing efficient spin orbit charge transfer intersystem crossing (SOCT-ISC) and photo-driven intermolecular electron transfer. J. Mater. Chem. C, 8, 4701–4712. https://doi.org/10.1039/C9TC06429J.

    Article  CAS  Google Scholar 

  52. Imran, M., El-Zohry, A. M., Matt, C., Taddei, M., Doria, S., Bussotti, L., et al. (2020). Intersystem crossing via charge recombination in a perylene–naphthalimide compact electron donor/acceptor dyad. J. Mater. Chem. C, 8, 8305–8319. https://doi.org/10.1039/D0TC00017E.

    Article  CAS  Google Scholar 

  53. Imran, M., Sukhanov, A. A., Wang, Z., Karatay, A., Zhao, J., Mahmood, Z., et al. (2019). Electronic coupling and spin–orbit charge-transfer intersystem crossing in phenothiazine–perylene compact electron donor/acceptor dyads. Journal of Physical Chemistry C, 123, 7010–7024. https://doi.org/10.1021/acs.jpcc.8b12040.

    Article  CAS  Google Scholar 

  54. 54P. de Echegaray, M. J. Mancheño, I. Arrechea-Marcos, R. Juárez, G. López-Espejo, J. T. López Navarrete, M. M. Ramos, C. Seoane, R. P. Ortiz and J. L. Segura, Synthesis of perylene imide diones as platforms for the development of pyrazine based organic semiconductors, J. Org. Chem., 2016, 81, 11256−11267. DOI:https://doi.org/10.1021/acs.joc.6b02214

  55. Liu, L., Zhang, C., & Zhao, J. (2014). The effect of the regioisomeric naphthalimide acetylide ligands on the photophysical properties of N^N Pt(II) bisacetylide complexes. Dalton Transactions, 43, 13434–13444. https://doi.org/10.1039/C4DT01732C.

    Article  CAS  PubMed  Google Scholar 

  56. Torres, É., Berberan-Santos, M. N., & Brites, M. J. (2015). Synthesis, photophysical and electrochemical properties of perylene dyes. Dyes. Pigments, 112, 298–304. https://doi.org/10.1016/j.dyepig.2014.07.019.

    Article  CAS  Google Scholar 

  57. Avlasevich, Y., & Müllen, K. (2007). An efficient synthesis of quaterrylenedicarboximide NIR dyes. Journal of Organic Chemistry, 72, 10243–10246. https://doi.org/10.1021/jo702019p.

    Article  CAS  Google Scholar 

  58. 58R. Fernando, Z. Mao and G. Sauvé, Rod-like oligomers incorporating 2,6-dialkylamino core-substituted naphthalene diimide as acceptors for organic photovoltaic, Organic Electronics, 2013, 14, 1683−1692. DOI:https://doi.org/https://doi.org/10.1016/j.orgel.2013.03.039

  59. Takizawa, S.-Y., Aboshi, R., & Murata, S. (2011). Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensitizers. Photochemical & Photobiological Sciences, 10, 895–903. https://doi.org/10.1039/C0PP00265H.

    Article  CAS  Google Scholar 

  60. Lou, Z., Hou, Y., Chen, K., Zhao, J., Ji, S., Zhong, F., et al. (2018). Different quenching effect of intramolecular rotation on the singlet and triplet excited states of bodipy. Journal of Physical Chemistry C, 122, 185–193. https://doi.org/10.1021/acs.jpcc.7b10466.

    Article  CAS  Google Scholar 

  61. Henry, E. R., & Hofrichter, J. (1992). Method (pp. 129–192). Enzymol.: Academic Press.

    Google Scholar 

  62. M. J. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada and D. Fox, et al., Gaussian 09 revision a.1. Gaussian inc, 2009

  63. Zhao, Y., Chen, K., Yildiz, E. A., Li, S., Hou, Y., Zhang, X., et al. (2020). Efficient intersystem crossing in the tröger’s base derived from 4-amino-1,8-naphthalimide and application as a potent photodynamic therapy reagent. Chemistry—A European Journal, 26, 3591–3599. https://doi.org/10.1002/chem.201905248.

    Article  CAS  Google Scholar 

  64. Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Callaghan, S., Flanagan, K. J., Wiesner, T., et al. (2018). Bodipy-pyrene and perylene dyads as heavy-atom-free singlet oxygen sensitizers. ChemPhotoChem, 2, 606–615. https://doi.org/10.1002/cptc.201800020.

    Article  CAS  Google Scholar 

  65. Sasaki, S., Hattori, K., Igawa, K., & Konishi, G.-I. (2015). Directional control of π-conjugation enabled by distortion of the donor plane in diarylaminoanthracenes: a photophysical study. Journal of Physical Chemistry A, 119, 4898–4906. https://doi.org/10.1021/acs.jpca.5b03238.

    Article  CAS  Google Scholar 

  66. Shao, S., Thomas, M. B., Park, K. H., Mahaffey, Z., Kim, D., & D’Souza, F. (2018). Sequential energy transfer followed by electron transfer in a bodipy–bisstyrylbodipy bound to C60 triad via a ‘two-point’ binding strategy. Chemical Communications, 54, 54–57. https://doi.org/10.1039/C7CC08063H.

    Article  CAS  Google Scholar 

  67. Collini, M. A., Thomas, M. B., Bandi, V., Karr, P. A., & D’Souza, F. (2017). Directly attached bisdonor-BF2 chelated azadipyrromethene-fullerene tetrads for promoting ground and excited state charge transfer. Chemistry—A European Journal, 23, 4450–4461. https://doi.org/10.1002/chem.201700200.

    Article  CAS  Google Scholar 

  68. Wang, Z., Zhao, J., Di Donato, M., & Mazzone, G. (2019). Increasing the anti-stokes shift in TTA upconversion with photosensitizers showing red-shifted spin-allowed charge transfer absorption but a non-compromised triplet state energy level. Chemical Communications, 55, 1510–1513. https://doi.org/10.1039/C8CC08159J.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, K., Taddei, M., Bussotti, L., Foggi, P., Zhao, J., & Di Donato, M. (2020). Near-IR-absorbing bodipy-5,10-dihydrophenazine compact electron donor/acceptor dyads and triads: spin–orbit charge transfer intersystem crossing and charge-transfer state. ChemPhotoChem, 4, 487–501. https://doi.org/10.1002/cptc.201900294.

    Article  CAS  Google Scholar 

  70. Dong, Y., Elmali, A., Zhao, J., Dick, B., & Karatay, A. (2020). Long-lived triplet excited state accessed with spin–orbit charge transfer intersystem crossing in red light-absorbing phenoxazine-styryl bodipy electron donor/acceptor dyads. ChemPhysChem, 21, 1388–1401. https://doi.org/10.1002/cphc.202000300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lakowicz and JosephR, Principles of fluorescence spectroscopy, Plenum Press, 1983.

  72. Huang, L., Yang, W., & Zhao, J. (2014). Switching of the triplet excited state of styryl 2,6-diiodo-bodipy and its application in acid-activatable singlet oxygen photosensitizing. Journal of Organic Chemistry, 79, 10240–10255. https://doi.org/10.1021/jo5019014.

    Article  CAS  Google Scholar 

  73. Yu, H., Xiao, Y., Guo, H., & Qian, X. (2011). Convenient and efficient fret platform featuring a rigid biphenyl spacer between rhodamine and bodipy: transformation of ‘turn-on’ sensors into ratiometric ones with dual emission. Chemistry—A European Journal, 17, 3179–3191. https://doi.org/10.1002/chem.201002498.

    Article  CAS  Google Scholar 

  74. Bura, T., Nastasi, F., Puntoriero, F., Campagna, S., & Ziessel, R. (2013). Ultrafast energy transfer in triptycene-grafted bodipy scaffoldings. Chemistry—A European Journal, 19, 8900–8912. https://doi.org/10.1002/chem.201300413.

    Article  CAS  Google Scholar 

  75. Kandrashkin, Y. E., Wang, Z., Sukhanov, A. A., Hou, Y., Zhang, X., Liu, Y., et al. (2019). Balance between triplet states in photoexcited orthogonal bodipy dimers. J. Phys. Chem. Lett., 10, 4157–4163. https://doi.org/10.1021/acs.jpclett.9b01741.

    Article  CAS  PubMed  Google Scholar 

  76. Dong, Y., Sukhanov, A. A., Zhao, J., Elmali, A., Li, X., Dick, B., et al. (2019). Spin–orbit charge-transfer intersystem crossing (SOCT-ISC) in bodipy-phenoxazine dyads: effect of chromophore orientation and conformation restriction on the photophysical properties. Journal of Physical Chemistry C, 123, 22793–22811. https://doi.org/10.1021/acs.jpcc.9b06170.

    Article  CAS  Google Scholar 

  77. Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews, 103, 3899–4032. https://doi.org/10.1021/cr940745l.

    Article  PubMed  Google Scholar 

  78. Wang, Z., Gao, Y., Hussain, M., Kundu, S., Rane, V., Hayvali, M., et al. (2018). Efficient radical-enhanced intersystem crossing in an NDI-tempo dyad: photophysics, electron spin polarization, and application in photodynamic therapy. Chemistry—A European Journal, 24, 18663–18675. https://doi.org/10.1002/chem.201804212.

    Article  CAS  Google Scholar 

  79. Xu, K., Zhao, J., & Moore, E. G. (2017). Covalently bonded perylene–diiodobodipy dyads for thiol-activatable triplet–triplet annihilation upconversion. Journal of Physical Chemistry C, 121, 22665–22679. https://doi.org/10.1021/acs.jpcc.7b06922.

    Article  CAS  Google Scholar 

  80. Pearce, N., Davies, E. S., Horvath, R., Pfeiffer, C. R., Sun, X.-Z., Lewis, W., et al. (2018). Thionated naphthalene diimides: tuneable chromophores for applications in photoactive dyads. Physical Chemistry Chemical Physics: PCCP, 20, 752–764. https://doi.org/10.1039/C7CP06952A.

    Article  CAS  PubMed  Google Scholar 

  81. Cui, X., El-Zohry, A. M., Wang, Z., Zhao, J., & Mohammed, O. F. (2017). Homo- or hetero-triplet–triplet annihilation? A case study with perylene-bodipy dyads/triads. Journal of Physical Chemistry C, 121, 16182–16192. https://doi.org/10.1021/acs.jpcc.7b05620.

    Article  CAS  Google Scholar 

  82. Ventura, B., Bertocco, A., Braga, D., Catalano, L., d’Agostino, S., Grepioni, F., & Taddei, P. (2014). Luminescence properties of 1,8-naphthalimide derivatives in solution, in their crystals, and in co-crystals: Toward room-temperature phosphorescence from organic materials. Journal of Physical Chemistry C, 118, 18646–18658. https://doi.org/10.1021/jp5049309.

    Article  CAS  Google Scholar 

  83. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of photochemistry, third edition, Crc Press, 2006

  84. Liu, D., El-Zohry, A. M., Taddei, M., Matt, C., Bussotti, L., Wang, Z., et al. (2020). Long-lived charge-transfer state induced by Spin–orbit charge transfer intersystem crossing (SOCT-ISC) in a compact spiro electron donor/acceptor dyad. Angewandte Chemie International Edition, 59, 11591–11599. https://doi.org/10.1002/anie.202003560.

    Article  CAS  PubMed  Google Scholar 

  85. Ji, S., Wu, W., Wu, W., Song, P., Han, K., Wang, Z., et al. (2010). Tuning the luminescence lifetimes of ruthenium(II) polypyridine complexes and its application in luminescent oxygen sensing. Journal of Materials Chemistry, 20, 1953–1963. https://doi.org/10.1039/B916468E.

    Article  CAS  Google Scholar 

  86. Xiang, H., Zhou, L., Feng, Y., Cheng, J., Wu, D., & Zhou, X. (2012). Tunable fluorescent/phosphorescent platinum(II) porphyrin–fluorene copolymers for ratiometric dual emissive oxygen sensing. Inorganic Chemistry, 51, 5208–5212. https://doi.org/10.1021/ic300040n.

    Article  CAS  PubMed  Google Scholar 

  87. Lincoln, R., Kohler, L., Monro, S., Yin, H., Stephenson, M., Zong, R., et al. (2013). Exploitation of long-lived 3IL excited states for metal–organic photodynamic therapy: Verification in a metastatic melanoma model. Journal of the American Chemical Society, 135, 17161–17175. https://doi.org/10.1021/ja408426z.

    Article  CAS  PubMed  Google Scholar 

  88. Hou, Y., Liu, Q., & Zhao, J. (2020). An exceptionally long-lived triplet state of red light-absorbing compact phenothiazine-styrylbodipy electron donor/acceptor dyads: a better alternative to the heavy atom-effect? Chemical Communications, 56, 1721–1724. https://doi.org/10.1039/C9CC09058D.

    Article  CAS  PubMed  Google Scholar 

  89. Ji, S., Wu, W., Wu, W., Guo, H., & Zhao, J. (2011). Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3IL equilibrium: efficient triplet sensitizers for low-power upconversion. Angewandte Chemie International Edition, 50, 1626–1629. https://doi.org/10.1002/anie.201006192.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, J., Ji, S., Wu, W., Wu, W., Guo, H., Sun, J., et al. (2012). Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: From molecular design to applications. RSC Adv., 2, 1712–1728. https://doi.org/10.1039/C1RA00665G.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. Li thanks the NSFC (21576043) for financial support. J. Zhao thanks the NSFC (U2001222, 21673031, 21761142005 and 21911530095) and the State Key Laboratory of Fine Chemicals (ZYTS201901) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolian Li, Jianzhang Zhao or Mingde Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7501 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Pang, J., Imran, M. et al. Charge separation, charge recombination and intersystem crossing in orthogonal naphthalimide–perylene electron donor/acceptor dyad. Photochem Photobiol Sci 20, 69–85 (2021). https://doi.org/10.1007/s43630-020-00002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-020-00002-w

Navigation