Skip to main content
Log in

Luminescent multi-terpyridine ligands: towards 2D polymer formation in solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The investigated multiterpyridine chromophores form a 2D network upon metal ion complexation that causes profound changes to their photophysical properties; the experimental results are complemented by modeling of the electronic properties of isolated monomers as well as the structure of the polymeric network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. U. S. Schubert, H. Hofmeier and G. R. Newkome, Modern Terpyridine Chemistry, Wiley-VCH, Weinheim, Germany, 2006.

    Book  Google Scholar 

  2. A. Wild, A. Winter, F. Schlütter and U. S. Schubert, Advances in the field of π-conjugated 2,2′:6′,2′′-terpyridines, Chem. Soc. Rev., 2011, 40, 1459

    Article  CAS  Google Scholar 

  3. E. C. Constable, 2,2′:6′,2′′-Terpyridines: From chemical obscurity to common supramolecular motifs, Chem. Soc. Rev., 2007, 36, 246.

    Article  CAS  Google Scholar 

  4. C. W. Machan, M. Adelhart, A. A. Sarjeant, C. L. Stern, J. Sutter, K. Meyer and C. A. Mirkin, One-Pot Synthesis of an Fe(II) Bis-Terpyridine Complex with Allosterically Regulated Electronic Properties, J. Am. Chem. Soc., 2012, 134, 16921

    Article  CAS  Google Scholar 

  5. F. Barigelletti and L. Flamigni, Photoactive molecular wires based on metalcomplexes, Chem. Soc. Rev., 2000, 29, 1.

    Article  CAS  Google Scholar 

  6. C. R. K. Glasson, L. F. Lindoy and G. V. Meehan, Recent developments in the d-block metallo-supramolecular chemistry of polypyridyls, Coord. Chem. Rev., 2008, 252, 940

    Article  CAS  Google Scholar 

  7. F. Puntoriero, S. Campagna, A. M. Stadler and J.-M. Lehn, Luminescence properties and redox behavior of Ru(II) molecular racks, Coord. Chem. Rev., 2008, 252, 2480.

    Article  CAS  Google Scholar 

  8. For some recent examples, see

  9. X. Lu, X. Li, Y. Cao, A. Schultz, J.-L. Wang, C. N. Moorefield, C. Wesdemiotis, S. Z. D. Cheng and G. R. Newkome, Self-Assembly of a Supramolecular, Three-Dimensional, Spoked, Bicycle-like Wheel, Angew. Chem., Int. Ed., 2013, 52, 7728

    Article  CAS  Google Scholar 

  10. A. Schultz, X. Li, B. Barkakaty, C. N. Moorfield, C. Wesdemiotis and G. R. Newkome, Stoichiometric Self-Assembly of Isomeric, Shape-Persistent, Supramacromolecular Bowtie and Butterfly Structures, J. Am. Chem. Soc., 2012, 134, 7672

    Article  CAS  Google Scholar 

  11. Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome and C. Wesdemiotis, Design, Synthesis, and Traveling Wave Ion Mobility Mass Spectrometry Characterization of Iron(II)–and Ruthenium(II)–Terpyridine Metallomacrocycles, J. Am. Chem. Soc., 2011, 133, 11967

    Article  CAS  Google Scholar 

  12. J.-L. Wang, X. Li, X. Lu, I.-F. Hsieh, Y. Cao, C. N. Moorefield, C. Wesdemiotis, S. Z. D. Cheng and G. R. Newkome, Stoichiometric Self-Assembly of Shape-Persistent 2D Complexes: A Facile Route to a Symmetric Supramacromolecular Spoked Wheel, J. Am. Chem. Soc., 2011, 133, 11450.

    Article  CAS  Google Scholar 

  13. P. R. Andres and U. S. Schubert, New Functional Polymers and Materials Based on 2,2′:6′,2′′-Terpyridine Metal Complexes, Adv. Mater., 2004, 16, 1043

    Article  CAS  Google Scholar 

  14. U. S. Schubert and C. Eschbaumer, Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers, Angew. Chem., Int. Ed., 2002, 41, 2892.

    Article  CAS  Google Scholar 

  15. For some recent examples, see

  16. J. Zhan, Q. Hu, Q. Wu, C. Li, H. Qiu, M. Zhang and S. Yin, A stimuli-responsive orthogonal supramolecular polymer network formed by metal–ligand and host–guest interactions, Chem. Commun., 2014, 50, 722

    Article  CAS  Google Scholar 

  17. J. K. Molloy, P. Ceroni, M. Venturi, T. Bauer, J. Sakamoto and G. Bergamini, Self-assembly of nanocrystalline tetra-terpyridine complexes: from molecules to mesoscopic objects, Soft Matter, 2013, 9, 10754

    Article  CAS  Google Scholar 

  18. K. Zhang, Y. Zha, B. Peng, Y. Chen and G. N. Tew, Metallo-Supramolecular Cyclic Polymers, J. Am. Chem. Soc., 2013, 135, 15994

    Article  CAS  Google Scholar 

  19. I. Eryazici, O. K. Farha, O. C. Compton, C. Stern, J. T. Hupp and S. T. Nguyen, Luminescent infinite coordination polymer materials from metal-terpyridine ligation, Dalton Trans., 2011, 40, 9189.

    Article  CAS  Google Scholar 

  20. G. Albano, V. Balzani, E. C. Constable, M. Maestri and D. R. Smith, Photoinduced processes in 4′-(9-anthryl)-2,2′:6′,2′′-terpyridine its protonated forms and Zn (II), Ru (II) and Os (II) complexes, Inorg. Chim. Acta, 1998, 277, 225.

    Article  CAS  Google Scholar 

  21. T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto and A. D. Schlüter, Synthesis of Free-Standing, Monolayered Organometallic Sheets at the Air/Water Interface, Angew. Chem., Int. Ed., 2011, 50, 7879.

    Article  CAS  Google Scholar 

  22. Z. Zheng, C. S. Ruiz-Vargas, T. Bauer, A. Rossi, P. Payamyar, A. Schütz, A. Stemmer, J. Sakamoto and A. D. Schlüter, Square-Micrometer-Sized, Free-Standing Organometallic Sheets and Their Square-Centimeter-Sized Multilayers on Solid Substrates, Macromol. Rapid Commun., 2013, 34, 1670.

    Article  CAS  Google Scholar 

  23. T. Bauer, A. D. Schlüter and J. Sakamoto, Towards 2D and 3D Coordination Polymers: Synthesis of Shape-Persistent Star Monomers with 2,2′:6′,2′′-Terpyridin-4′-yl Units at the Periphery, Synlett, 2010, 877.

    Google Scholar 

  24. J. N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991.

    Article  Google Scholar 

  25. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution, Pure Appl. Chem., 2011, 83, 2213.

    Article  CAS  Google Scholar 

  26. Molekel, version 4.3 and 5.4, http://www.cscs.ch/molekel/ S. Portmann and H. P. Lüthi, Chimia, 2000, 54, 766.

    CAS  Google Scholar 

  27. PYMOL0.99 (http://pymol.sourceforge.net/).

  28. M. J. Frisch, et al., Gaussian 09, revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  29. P. S. Braterman, J.-I. Song and R. D. Peacock, Electronic absorption spectra of the iron(ii) complexes of 2,2′-bipyridine, 2,2′-bipyrimidine, 1,10-phenanthroline, and 2,2′:6′,2′′-terpyridine and their reduction products, Inorg. Chem., 1992, 31, 555 and references therein.

    Article  CAS  Google Scholar 

  30. C. Creutz, M. Chou, T. L. Netzel, M. Okumura and N. Sutin, Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II), J. Am. Chem. Soc., 1980, 102, 1309.

    Article  CAS  Google Scholar 

  31. E. Amouyal and M. Mouallem-Bahout, Photophysical study of tolylterpyridine complexes. Intramolecular electron transfer in an osmium(II) dyad, J. Chem. Soc., Dalton Trans., 1992, 509.

    Google Scholar 

  32. R. A. Binstead, SPECFIT; Spectrum Software Associates, Chapell Hill, NC, 1996.

    Google Scholar 

  33. H. Gampp, M. Maeder, C. J. Meyer and A. Zuberbulher, Calculation of equilibrium constants from multiwavelength spectroscopic data—II132, 95. Specfit: two user-friendly programs in basic and standard fortran 77, Talanta, 1985, 32, 257.

    Article  CAS  Google Scholar 

  34. U. S. Schubert, H. Hofmeier and G. R. Newkome, Modern Terpyridine Chemistry, Wiley-VCH, Weinheim, 2006, ch. 4.

    Book  Google Scholar 

  35. X. Chen, Q. Zhou, Y. Cheng, Y. Geng, D. Ma, Z. Xie and L. Wang, Synthesis, structure and luminescence properties of zinc (II) complexes with terpyridine derivatives as ligands, J. Lumin., 2007, 126, 81.

    Article  CAS  Google Scholar 

  36. L. J. Liang, X. J. Zhao and C. Z. Huang, Zn(II) complex of terpyridine for the highly selective fluorescent recognition of pyrophosphate, Analyst, 2012, 137, 953.

    Article  CAS  Google Scholar 

  37. M. Presselt, B. Dietzek, M. Schmitt, J. Popp, A. Winter, M. Chiper, C. Friebe and U. S. Schubert, Zinc(II) Bisterpyridine Complexes: The Influence of the Cation on the π-Conjugation between Terpyridine and the Lateral Phenyl Substituent, J. Phys. Chem. C, 2008, 112, 18651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ceroni.

Additional information

Electronic supplementary information (ESI) available: Photophysical and modeling data. See DOI: 10.1039/c4pp00056k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallina, M.E., Bergamini, G., Di Motta, S. et al. Luminescent multi-terpyridine ligands: towards 2D polymer formation in solution. Photochem Photobiol Sci 13, 997–1004 (2014). https://doi.org/10.1039/c4pp00056k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00056k

Navigation