Skip to main content

Advertisement

Log in

Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based “light switches” for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10−16 mol l−1 for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Mandhare, P. H. Patil, D. M. Jagdale and V. J. Kadam, Targeting matrix metalloproteinases: an important strategy in cancer therapeutics, Int. J. Pharm. Sci. Rev. Res. 2012, 12, 27–39.

    CAS  Google Scholar 

  2. S. A. Rabbani and R. H. Xing, Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies (review), Int. J. Oncol. 1998, 12, 911–920.

    CAS  PubMed  Google Scholar 

  3. O. Vasiljeva and B. Turk, Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumor invasion, Biochimie 2008, 90, 380–386.

    Article  CAS  PubMed  Google Scholar 

  4. J. R. MacDougall and L. M. Matrisian, Matrix metalloproteinases in the pathogenesis of breast cancer, Contemp. Cancer Res. 1999, 3, 305–324.

    CAS  Google Scholar 

  5. Y. Tang, M. T. Nakada, P. Kesavan, F. McCabe, H. Millar, P. Rafferty, P. Bugelski and L. Yan, Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases, Cancer Res. 2005, 65, 3193–3199.

    Article  CAS  PubMed  Google Scholar 

  6. M. M. Mohamed and B. F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer, Nat. Rev. Cancer 2006, 6, 764–775.

    Article  CAS  PubMed  Google Scholar 

  7. T. Szarvas, D. F. vom, S. Ergun and H. Rubben, Matrix metalloproteinases and their clinical relevance in urinary bladder cancer, Nat. Rev. Urol. 2011, 8, 241–254.

    Article  CAS  PubMed  Google Scholar 

  8. W. Pham, R. Weissleder and C.-H. Tung, An azulene dimer as a near-infrared quencher, Angew. Chem., Int. Ed. 2002, 41, 3659–3662.

    Article  CAS  Google Scholar 

  9. W. Pham, Y. Choi, R. Weissleder and C.-H. Tung, Developing a peptide-based near-infrared molecular probe for protease sensing, Bioconjugate Chem. 2004, 15, 1403–1407.

    Article  CAS  Google Scholar 

  10. M. Zhao, L. Josephson, Y. Tang and R. Weissleder, Magnetic sensors for protease assays, Angew. Chem., Int. Ed. 2003, 42, 1375–1378.

    Article  CAS  Google Scholar 

  11. M. Funovics, R. Weissleder and C.-H. Tung, Protease sensors for bioimaging, Anal. Bioanal. Chem. 2003, 377, 956–963.

    Article  CAS  PubMed  Google Scholar 

  12. B. E. Turk, L. L. Huang, E. T. Piro and L. C. Cantley, Determination of protease cleavage site motifs using mixture-based oriented peptide libraries, Nat. Biotechnol. 2001, 19, 661–667.

    Article  CAS  PubMed  Google Scholar 

  13. A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro and J. K. Barton, A molecular light switch for DNA: Ru(bpy)2(dppz)2+, J. Am. Chem. Soc. 1990, 112, 4960–4962.

    Article  CAS  Google Scholar 

  14. B. Simard, B. Tomanek, F. C. J. M. van Veggel and A. Abulrob, Optimal dye-quencher pairs for the design of an “activatable” nanoprobe for optical imaging, Photochem. Photobiol. Sci. 2013, 12, 1824–1829.

    Article  CAS  PubMed  Google Scholar 

  15. T. Quillard, K. Croce, F. A. Jaffer, R. Weissleder and P. Libby, Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo, Thromb. Haemostasis 2011, 105, 828–836.

    Article  CAS  Google Scholar 

  16. K. Welser, R. Adsley, B. M. Moore, W. C. Chan and J. W. Aylott, Protease sensing with nanoparticle based platforms, Analyst 2011, 136, 29–41.

    Article  CAS  PubMed  Google Scholar 

  17. G. B. Kim and Y.-P. Kim, Analysis of protease activity using quantum dots and resonance energy transfer, Theranostics 2012, 2, 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Pavan and F. Berti, Short peptides as biosensor transducers, Anal. Bioanal. Chem. 2012, 402, 3055–3070.

    Article  CAS  PubMed  Google Scholar 

  19. H. Kobayashi and P. L. Choyke, Target-Cancer-Cell-Specific Activatable Fluorescence Imaging Probes: Rational Design and in Vivo Applications, Acc. Chem. Res. 2011, 44, 83–90.

    Article  CAS  PubMed  Google Scholar 

  20. X. Huang, I. H. El-Sayed and M. A. El-Sayed, Fluorescent quenching gold nanoparticles: potential biomedical applications, John Wiley & Sons, Inc., 2010, pp. 573–599.

    Google Scholar 

  21. L.-M. Lacroix, H. N. Frey, D. Ho, X. Sun, K. Cheng and S. Sun, Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles, Nano Lett. 2011, 11, 1641–1645.

    Article  CAS  PubMed  Google Scholar 

  22. H. Wang, T. B. Shrestha, M. T. Basel, R. K. Dani, G.-M. Seo, S. Balivada, M. M. Pyle, H. Prock, O. B. Koper, P. S. Thapa, D. Moore, P. Li, V. Chikan, D. L. Troyer and S. H. Bossmann, Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages, Beilstein J. Nanotechnol. 2012, 3, 444–455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. J. Sobczynski, H. H. Toennesen and S. Kristensen, Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements, Pharmazie 2013, 68, 100–109.

    CAS  PubMed  Google Scholar 

  24. L. Patsenker, A. Tatarets, O. Kolosova, O. Obukhova, Y. Povrozin, I. Fedyunyayeva, I. Yermolenko and E. Terpetschnig, Fluorescent probes and labels for biomedical applications, Ann. N. Y. Acad. Sci. 2008, 1130, 179–187.

    Article  CAS  PubMed  Google Scholar 

  25. T. Szarvas, D. F. vom, S. Ergun and H. Rubben, Matrix metalloproteinases and their clinical relevance in urinary bladder cancer, Nat. Rev. Urol. 2011, 8, 241–254.

    Article  CAS  PubMed  Google Scholar 

  26. E. Song, D. Cheng, Y. Song, M. Jiang, J. Yu and Y. Wang, A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample, Biosens. Bioelectron. 2013, 47, 445–450.

    Article  CAS  PubMed  Google Scholar 

  27. L. Z. Swisher, L. U. Syed, A. M. Prior, F. R. Madiyar, K. R. Carlson, T. A. Nguyen, D. H. Hua and J. Li, Electrochemical Protease Biosensor Based on Enhanced AC Voltammetry Using Carbon Nanofiber Nanoelectrode Arrays, J. Phys. Chem. C 2013, 117, 4268–4277.

    Article  CAS  Google Scholar 

  28. S. H. Bossmann and D. L. Troyer, Point-of-care routine rapid screening: the future of cancer diagnosis?, Expert Rev. Mol. Diagn. 2013, 13, 107–109.

    Article  CAS  PubMed  Google Scholar 

  29. J. E. Swedberg and J. M. Harris, Natural and Engineered Plasmin Inhibitors: Applications and Design Strategies, ChemBioChem 2012, 13, 336–348.

    Article  CAS  PubMed  Google Scholar 

  30. C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo and B. Xu, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc. 2004, 126, 9938–9939.

    Article  CAS  PubMed  Google Scholar 

  31. M. T. Basel, S. Balivada, H. Wang, T. B. Shrestha, G. M. Seo, M. Pyle, G. Abayaweera, R. Dani, O. B. Koper, M. Tamura, V. Chikan, S. H. Bossmann and D. L. Troyer, Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model, Int. J. Nanomed. 2012, 7, 297–306.

    Article  CAS  Google Scholar 

  32. A. B. Kollbe, H. Wang, S. Robinson, T. B. Shrestha, D. L. Troyer, S. H. Bossmann and X. S. Sun, Ring opening of epoxidized methyl oleate using a novel acid-functionalized iron nanoparticle catalyst, Green Chem. 2012, 14, 136–142.

    Article  Google Scholar 

  33. I. A. Besschetnova, A. V. Chudinov, D. N. Kaluzhny, A. K. Shchyolkina, O. F. Borisova, S. V. Tokalov, V. E. Kuznetsova, A. V. Lobanov, V. D. Rumyantseva, V. E. Barsky and A. D. Mirzabekov, Fluorescence of meso-tetrakis[4-(carboxy)phenyl]porphine covalently bound to oligonucleotides d(CG)5 and d(TA)5, Biofizika 2002, 47, 259–267.

    CAS  PubMed  Google Scholar 

  34. C. R. Lambert, E. Reddi, J. D. Spikes, M. A. J. Rodgers and G. Jori, The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media, Photochem. Photobiol. 1986, 44, 595–601.

    Article  CAS  PubMed  Google Scholar 

  35. V. Buschmann, K. D. Weston and M. Sauer, Spectroscopic study and evaluation of red-absorbing fluorescent dyes, Bioconjugate Chem. 2003, 14, 195–204.

    Article  CAS  Google Scholar 

  36. http://www.rsc.org/periodic-table/element/26/iron.

  37. V. S. Kalambur, E. K. Longmire and J. C. Bischof, Cellular Level Loading and Heating of Superparamagnetic Iron Oxide Nanoparticles, Langmuir 2007, 23, 12329–12336.

    Article  CAS  PubMed  Google Scholar 

  38. A. J. Kell, M. L. Barnes, Z. J. Jakubek and B. Simard, Toward Brighter Hybrid Magnetic-Luminescent Nanoparticles: Luminosity Dependence on the Excited State Properties of Embedded Dyes, J. Phys. Chem. C 2011, 115, 18412–18421.

    Article  CAS  Google Scholar 

  39. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, 2009, p.1120.

    Google Scholar 

  40. C. R. Lambert, E. Reddi, J. D. Spikes, M. A. J. Rodgers and G. Jori, The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media, Photochem. Photobiol. 1986, 44, 595–601.

    Article  CAS  PubMed  Google Scholar 

  41. R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, V. G. Cerio, L. d. Hinds, Aggregation of meso-substituted water-soluble porphyrins, J. Am. Chem. Soc. 1972, 94, 4511–4517.

    Article  CAS  PubMed  Google Scholar 

  42. R. Mannhold, Calculation of lipophilicity: a classification of methods, Verlag Helvetica Chimica Acta, 2006, pp. 333–352.

    Google Scholar 

  43. D. Ben-Avraham, L. S. Schulman, S. H. Bossmann, C. Turro and N. J. Turro, Luminescence Quenching of Ruthenium(II)-Tris(phenanthroline) by Cobalt(III)-Tris(phenanthroline) Bound to the Surface of Starburst Dendrimers, J. Phys. Chem. B 1998, 102, 5088–5093.

    Article  CAS  Google Scholar 

  44. T. N. Samarakoon, Thesis, Kansas State University, Manhattan, KS, USA, 2010.

    Google Scholar 

  45. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, Nanometal surface energy transfer in optical rulers, breaking the FRET barrier, J. Am. Chem. Soc. 2005, 127, 3115–3119.

    Article  CAS  PubMed  Google Scholar 

  46. A. El-Faham and F. Albericio, Peptide Coupling Reagents, More than a Letter Soup, Chem. Rev. 2011, 111, 6557–6602.

    Article  CAS  PubMed  Google Scholar 

  47. C. T. Mant, Y. Chen, Z. Yan, T. V. Popa, J. M. Kovacs, J. B. Mills, B. P. Tripet and R. S. Hodges, HPLC analysis and purification of peptides, Methods Mol. Biol. 2007, 386, 3–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. M. O. Palmier and D. S. R. Van, Rapid determination of enzyme kinetics from fluorescence: Overcoming the inner filter effect, Anal. Biochem. 2007, 371, 43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. H. Bossmann, D. L. Troyer and M. T. Basel, Diagnostic protease assay using a nanoparticle-linked oligopeptide substrate, and use for cancer detection and prognosis, Kansas State University Research Foundation, USA, 2009, pp.65.

    Google Scholar 

  50. L. Menichetti, L. Manzoni, L. Paduano, A. Flori, C. Kusmic, M. D. De, S. Casciaro, F. Conversano, M. Lombardi, V. Positano and D. Arosio, Iron oxide-gold core-shell nanoparticles as multimodal imaging contrast agent, IEEE Sens. J. 2013, 13, 2341–2347.

    Article  CAS  Google Scholar 

  51. P. M. Todebush and J. P. Bowen, Molecular mechanics force field development and applications, Kluwer Academic/Plenum Publishers, 2001, pp. 37–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwang Wang, Dinusha N. Udukala or Stefan H. Bossmann.

Additional information

Electronic supplementary information (ESI) available: Synthesis and characterization of the nanoplatform and its components, as well as additional photophysical information. See DOI: 10.1039/c3pp50260k

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Udukala, D.N., Samarakoon, T.N. et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases. Photochem Photobiol Sci 13, 231–240 (2014). https://doi.org/10.1039/c3pp50260k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50260k

Navigation