Skip to main content

Advertisement

Log in

Upconversion nanoparticle-based fluorescence resonance energy transfer sensing platform for the detection of cathepsin B activity in vitro and in vivo

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple fluorescence resonance energy transfer (FRET) sensing platform (termed as USP), comprised of upconversion nanoparticles (UCNPs) as the energy donor and Cy5 as the energy acceptor, has been synthesized for cathepsin B (CTSB) activity detection in vitro and in vivo. When Cy5-modified peptide substrate (peptide-Cy5) of CTSB is covalently linked on the surface of UCNPs, the FRET between the UCNPs (excitation: 980 nm; emission: 541 nm/655 nm) and Cy5 (excitation: 645 nm) leads to a reduction in the red upconversion luminescence (UCL) signal intensity of UCNPs. Cy5 can be liberated from UCNPs in the presence of CTSB through the cleavage of peptide-Cy5 by CTSB, leading to the recovery of the red UCL signal of UCNPs. Because the green UCL signal of UCNPs remains constant during the CTSB digestion, it can be considered as an internal reference. The findings demonstrate the ability of USP to detect CTSB with the linear detection ranges of 1 to 100 ng·mL−1 in buffer and 2 × 103 to 1 × 105 cells in 0.2 mL cell lysates. The limits of detection (LODs) are 0.30 ng·mL−1 in buffer and 887 cells in 0.2 mL of cell lysates (S/N = 3). The viability of USP to detect CTSB activity in tumor-bearing mice is has further been investigated using in vivo fluorescent imaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anderson MJ, Song Y, Fan H, Wright JG, Ren Z, Hua DH, Koehne JE, Meyyappan M, Li J (2020) Simultaneous, multiplex quantification of protease activities using a gold microelectrode array. Biosens Bioelectron 165:112330. https://doi.org/10.1016/j.bios.2020.112330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dai Z, Cheng Q, Zhang Y (2020) Rational design of a humanized antibody inhibitor of cathepsin B. Biochemistry 59:1420–1427. https://doi.org/10.1021/acs.biochem.0c00046

    Article  CAS  PubMed  Google Scholar 

  3. Jin X, Yang H, Mao Z, Wang B (2021) Cathepsin B-responsive multifunctional peptide conjugated gold nanorods for mitochondrial targeting and precise photothermal cancer therapy. J Colloid Interface Sci 601:714–726. https://doi.org/10.1016/j.jcis.2021.05.135

    Article  CAS  PubMed  Google Scholar 

  4. Mijanović O, Branković A, Panin AN, Savchuk S, Timashev P, Ulasov I, Lesniak MS (2019) Cathepsin B: a sellsword of cancer progression. Cancer Lett 449:207–214. https://doi.org/10.1016/j.canlet.2019.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Ren X, Zhu Y, Fan Z, Zhang L, Liu Z, Dong L, Hai Z (2021) Cathepsin B-activated fluorescent and photoacoustic imaging of tumor. Anal Chem 93:9304–9308. https://doi.org/10.1021/acs.analchem.1c02145

    Article  CAS  PubMed  Google Scholar 

  6. Mitrović A, Završnik J, Mikhaylov G, Knez D, Pečar Fonović U, Matjan Štefin P, Butinar M, Gobec S, Turk B, Kos J (2022) Evaluation of novel cathepsin-X inhibitors in vitro and in vivo and their ability to improve cathepsin-B-directed antitumor therapy. Cell Mol Life Sci 79:34. https://doi.org/10.1007/s00018-021-04117-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shim MK, Moon Y, Yang S, Kim J, Cho H, Lim S, Yoon HY, Seong JK, Kim K (2020) Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials 261:120347. https://doi.org/10.1016/j.biomaterials.2020.120347

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Vigliarolo BG, Chowdhury MA, Nyarko JNK, Mousseau DD, Phenix CP (2019) Design and synthesis of fluorogenic substrate-based probes for detecting cathepsin B activity. Bioorg Chem 92:103194. https://doi.org/10.1016/j.bioorg.2019.103194

    Article  CAS  PubMed  Google Scholar 

  9. Adamo M, Sun G, Qiu D, Valente J, Lan W, Song H, Bolgar M, Katiyar A, Krishnamurthy G (2017) Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis. J Chromatogr A 1481:44–52. https://doi.org/10.1016/j.chroma.2016.12.051

    Article  CAS  PubMed  Google Scholar 

  10. Kim CJ, Lee DI, Kim C, Lee K, Lee CH, Ahn IS (2014) Gold nanoparticles-based colorimetric assay for cathepsin B activity and the efficiency of its inhibitors. Anal Chem 86:3825–3833. https://doi.org/10.1021/ac4039064

    Article  CAS  PubMed  Google Scholar 

  11. Song Y, Fan H, Anderson MJ, Wright JG, Hua DH, Koehne J, Meyyappan M, Li J (2019) Electrochemical activity assay for protease analysis using carbon nanofiber nanoelectrode arrays. Anal Chem 91:3971–3979. https://doi.org/10.1021/acs.analchem.8b05189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li CH, Lv WY, Yan Y, Yang FF, Zhen SJ, Huang CZ (2021) Nucleolin-targeted DNA nanotube for precise cancer therapy through Förster resonance energy transfer-indicated telomerase responsiveness. Anal Chem 93:3526–3534. https://doi.org/10.1021/acs.analchem.0c04917

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Zhang CJ, Gao M, Zhang R, Tang BZ, Liu B (2015) Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem Int Ed Engl 54:1780–1786. https://doi.org/10.1002/anie.201408476

    Article  CAS  PubMed  Google Scholar 

  14. Lin G, Jin D (2021) Responsive sensors of upconversion nanoparticles. ACS Sens 6:4272–4282. https://doi.org/10.1021/acssensors.1c02101

    Article  CAS  PubMed  Google Scholar 

  15. Xiang J, Zhou S, Lin J, Wen J, Xie Y, Yan B, Yan Q, Zhao Y, Shi F, Fan H (2021) Low-power near-infrared-responsive upconversion nanovectors. ACS Appl Mater Interfaces 13:7094–7101. https://doi.org/10.1021/acsami.0c21115

    Article  CAS  PubMed  Google Scholar 

  16. Yang N, Gong F, Cheng L (2022) Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chem Sci 13:1883–1898. https://doi.org/10.1039/d1sc04413c

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Wang X, Ohulchanskyy TY, Chen G (2021) Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv Mater 33:e2000678. https://doi.org/10.1002/adma.202000678

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Chen C, Liu F, Liu J (2022) Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Microchim Acta 189:109. https://doi.org/10.1007/s00604-022-05180-1

    Article  CAS  Google Scholar 

  19. Marturano V, Kozlowska J, Bajek A, Giamberini M, Ambrogi V, Cerruti P, Garcia-Valls R, Montornes JM, Tylkowski B (2019) Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications. Coord Chem Rev 398:7. https://doi.org/10.1016/j.ccr.2019.213013

    Article  CAS  Google Scholar 

  20. Plunkett S, El Khatib M, Şencan İ, Porter JE, Kumar ATN, Collins JE, SakadŽić S, Vinogradov SA (2020) In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing. Nanoscale 12:2657–2672. https://doi.org/10.1039/c9nr07778b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun C, Gradzielski M (2022) Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 300:102579. https://doi.org/10.1016/j.cis.2021.102579

    Article  CAS  PubMed  Google Scholar 

  22. Yi Z, Luo Z, Qin X, Chen Q, Liu X (2020) Lanthanide-activated nanoparticles: a toolbox for bioimaging, therapeutics, and neuromodulation. Acc Chem Res 53:2692–2704. https://doi.org/10.1021/acs.accounts.0c00513

    Article  CAS  PubMed  Google Scholar 

  23. Zhu X, Su Q, Feng W, Li F (2017) Anti-Stokes shift luminescent materials for bio-applications. Chem Soc Rev 46:1025–1039. https://doi.org/10.1039/c6cs00415f

    Article  CAS  PubMed  Google Scholar 

  24. Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens OL, Rubio-Retama J, Kanaras AG (2015) Highly sensitive DNA sensor based on upconversion nanoparticles and graphene oxide. ACS Appl Mater Interfaces 7:12422–12429. https://doi.org/10.1021/am507591u

    Article  CAS  PubMed  Google Scholar 

  25. Ding S, Wu W, Peng T, Pang W, Jiang P, Zhan Q, Qi S, Wei X, Gu B, Liu B (2021) Near-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocomposite. Nanoscale Adv 3:2325–2333. https://doi.org/10.1039/d0na00985g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu L, Zhang H, Wang Z, Song D (2019) Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for caspase-9 activity detection in vitro and in vivo. Biosens Bioelectron 141:111403. https://doi.org/10.1016/j.bios.2019.111403

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Li X, Zhang F (2016) Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 141:3601–3620. https://doi.org/10.1039/c6an00150e

    Article  CAS  PubMed  Google Scholar 

  28. Fang Y, Li Y, Li Y, He R, Zhang Y, Zhang X, Liu Y, Ju H (2021) In situ protease secretion visualization and metastatic lymph nodes imaging via a cell membrane-anchored upconversion nanoprobe. Anal Chem 93:7258–7265. https://doi.org/10.1021/acs.analchem.1c00469

    Article  CAS  PubMed  Google Scholar 

  29. Feng Y, Chen H, Ma L, Shao B, Zhao S, Wang Z, You H (2017) Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+, Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging. ACS Appl Mater Interfaces 9:15096–15102. https://doi.org/10.1021/acsami.7b03411

    Article  CAS  PubMed  Google Scholar 

  30. Tian R, Zhang H, Chen H, Liu G, Wang Z (2018) Uncovering the binding specificities of lectins with cells for precision colorectal cancer diagnosis based on multimodal imaging. Adv Sci 5:1800214. https://doi.org/10.1002/advs.201800214

    Article  CAS  Google Scholar 

  31. Li X, Liu L, Fu Y, Chen H, Abualrejal MMA, Zhang H, Wang Z, Zhang H (2020) Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater 104:167–175. https://doi.org/10.1016/j.actbio.2020.01.003

    Article  CAS  PubMed  Google Scholar 

  32. Yamini S, Gunaseelan M, Gangadharan A, Lopez SA, Martirosyan KS, Girigoswami A, Roy B, Manonmani J, Jayaraman S (2021) Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb,Er nanocomposite. Nanotechnology 33. https://doi.org/10.1088/1361-6528/ac37e4

  33. Yamini S, Gunaseelan M, Kumar GA, Singh S, Dannangoda GC, Martirosyan KS, Sardar DK, Sivakumar S, Girigoswami A, Senthilselvan J (2020) NaGdF4:Yb, Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Microchim Acta 187:317. https://doi.org/10.1007/s00604-020-04285-9

    Article  CAS  Google Scholar 

  34. Li Y, Zhang X, Zhang Y, Zhang Y, He Y, Liu Y, Ju H (2020) Activatable photodynamic therapy with therapeutic effect prediction based on a self-correction upconversion nanoprobe. ACS Appl Mater Interfaces 12:19313–19323. https://doi.org/10.1021/acsami.0c03432

    Article  CAS  PubMed  Google Scholar 

  35. Song Y, Wright JG, Anderson MJ, Rajendran S, Ren Z, Hua DH, Koehne JE, Meyyappan M, Li J (2021) Quantitative detection of cathepsin B activity in neutral pH buffers using gold microelectrode arrays: toward direct multiplex analyses of extracellular proteases in human serum. ACS Sens 6:3621–3631. https://doi.org/10.1021/acssensors.1c01175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu L, Li XT, Zhang H, Chen HD, Abualrejal MMA, Song DQ, Wang ZX (2021) Six-in-one peptide functionalized upconversion@polydopamine nanoparticle-based ratiometric fluorescence sensing platform for real-time evaluating anticancer efficacy through monitoring caspase-3 activity. Sens Actuator B-Chem 333:8. https://doi.org/10.1016/j.snb.2021.129554

    Article  CAS  Google Scholar 

  37. Chen HD, Zhang H, Wang ZX (2021) Development of small animals in vivo fluorescence-photothermal dual mode imaging system. Chem J Chin Univ.-Chin 42:725–730. https://doi.org/10.7503/cjcu20200640

    Article  CAS  Google Scholar 

  38. Roth-Konforti ME, Bauer CR, Shabat D (2017) Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme. Angew Chem Int Ed Engl 56:15633–15638. https://doi.org/10.1002/anie.201709347

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Li J, Feng L, Yu J, Zhang Y, Ye D, Chen HY (2016) Lysosome-targeting fluorogenic probe for cathepsin B imaging in living cells. Anal Chem 88:12403–12410. https://doi.org/10.1021/acs.analchem.6b03717

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (Grant No. 81871406 and 61901438) and the Achievement Transformation Guidance Fund Between the First Hospital of Jilin University and Changchun Institute of Applied Chemistry (Grant No. CGZHYD202012-009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang or Huimao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2201 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, M., Zhang, H. et al. Upconversion nanoparticle-based fluorescence resonance energy transfer sensing platform for the detection of cathepsin B activity in vitro and in vivo. Microchim Acta 190, 181 (2023). https://doi.org/10.1007/s00604-023-05771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05771-6

Keywords

Navigation