Skip to main content
Log in

Asymmetric photoreaction of a diarylethene in hydrogen-bonded cocrystals with chiral molecules

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A photochromic diarylethene having 2-methyl-4-pyridyl groups formed chiral cocrystals with (R)- or (S)-1,1′-bi-2-naphthol (BINOL). X-ray crystal structure analysis revealed that the diarylethene forms O–H⋯N type hydrogen bonds with BINOL and the central hexatriene moiety is fixed in P- or M-helix conformation in the cocrystals. The diarylethene molecules underwent reversible cyclization reactions in the single-component crystal as well as in the cocrystals upon alternate irradiation with ultraviolet (UV) and visible light. In the chiral cocrystals, a highly enantioselective photocyclization reaction took place owing to the conformational confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, 1999, vol.1,.

  2. H. Bouas-Laurent, H. Dürr, Organic photochromism, Pure Appl. Chem. 2001, 73, 639–665.

    Article  CAS  Google Scholar 

  3. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 2003.

    Google Scholar 

  4. M. Irie, Diarylethenes for memories and switches, Chem. Rev. 2000, 100, 1685–1716.

    Article  CAS  Google Scholar 

  5. S. L. Gilat, S. H. Kawai and J. M. Lehn, Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species, Chem.–Eur. J. 1995, 1, 275–284.

    Article  CAS  Google Scholar 

  6. K. Matsuda and M. Irie, Photoswitching of intramolecular magnetic interaction using a diarylethene dimer, J. Am. Chem. Soc. 2001, 123, 9896–9897.

    Article  CAS  Google Scholar 

  7. J. Areephong, J. H. Hurenkamp, M. T. W. Milder, A. Meetsma, J. L. Herek, W. R. Browne and B. L. Feringa, Photoswitchable sexithiophene-based molecular wires, Org. Lett. 2009, 11, 721–724.

    Article  CAS  Google Scholar 

  8. H. Logtenberg, J. M. van der Velde, P. De Mendoza, J. Areephong, J. Hjelm, B. L. Feringa and W. R. Browne, Electrochemical switching of conductance with diarylethene-based redox-active polymers, J. Phys. Chem. C 2012, 116, 24136–24142.

    Article  CAS  Google Scholar 

  9. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai and T. Kawai, A digital fluorescent molecular photoswitch, Nature 2002, 420, 759–760.

    Article  CAS  Google Scholar 

  10. T. Shiono, T. Mihara and Y. Kobayashi, Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories, Jpn. J. Appl. Phys. 2007, 46, 3873–3877.

    Article  CAS  Google Scholar 

  11. G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco and C. Bertarelli, Diarylethene-based photochromic polyurethanes for multistate optical memories, J. Mater. Chem. 2011, 21, 13223–13231.

    Article  CAS  Google Scholar 

  12. M. Hanazawa, R. Sumiya, Y. Horikawa and M. Irie, Thermally irreversible photochromic systems: reversible photocyclization of 1,2-bis(2-methylbenzo[ b]thiophene-3-yl)perfluorocycloalkene derivatives, J. Chem. Soc., Chem. Commun. 1992 206–207.

    Google Scholar 

  13. S. Takami, S. Kobatake, T. Kawai and M. Irie, Extraordinarily high thermal stability of the closed-ring isomer of 1,2-bis(5-methyl-2-phenylthiazol-4-yl)perfluorocyclopentene, Chem. Lett. 2003 892–893.

    Google Scholar 

  14. S. Kobatake and M. Irie, Single-crystalline photochromism of diarylethenes, Bull. Chem. Soc. Jpn. 2004, 77, 195–210.

    Article  CAS  Google Scholar 

  15. M. Morimoto and M. Irie, Photochromism of diarylethene single crystals: crystal structures and photochromic performance, Chem. Commun. 2005 3895–3905.

    Google Scholar 

  16. H. Jean-Ruel, R. R. Cooney, M. Gao, C. Lu, M. A. Kochman, C. A. Morrison and R. J. D. Miller, Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals, J. Phys. Chem. A 2011, 115, 13158–13168.

    Article  CAS  Google Scholar 

  17. J. C. Boyer, C. J. Carling, S. Y. Chua, D. Wilson, B. Johnsen, D. Baillie and N. R. Branda, Photomodulation of fluorescent upconverting nanoparticle markers in live organisms by using molecular switches, Chem.–Eur. J. 2012, 18, 3122–3126.

    Article  CAS  Google Scholar 

  18. E. Vomasta, C. Högner, C. R. Branda, B. König, Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor, Angew. Chem., Int. Ed. 2008, 47, 7644–7647.

    Article  CAS  Google Scholar 

  19. A. A. Beharry and G. A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 2011, 40, 4422–4437.

    Article  CAS  Google Scholar 

  20. O. Sadovski, A. A. Beharry, F. Zhang and G. A. Woolley, Spectral tuning of azobenzene photoswitches for biological application, Angew. Chem., Int. Ed. 2009, 48, 1484–1486.

    Article  CAS  Google Scholar 

  21. A. de Meijere, L. Zhao, V. N. Belov, M. Bossi, M. Noltemeyer and S. W. Hell, 1,3-Bicyclo[1,1,1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phynylethynyl)anthracene fluorophore, Chem.–Eur. J. 2007, 13, 2503–2516.

    Article  Google Scholar 

  22. M. Fukagawa, I. Kawamura, T. Ubukata and Y. Yokoyama, Enantioselective photochromism of diarylethenes in human serum albumin, Chem.–Eur. J. 2013, 19, 9434–9437.

    Article  CAS  Google Scholar 

  23. T. Yamaguchi, K. Uchida and M. Irie, Asymmetric photocyclization of diarylethene derivatives, J. Am. Chem. Soc. 1997, 119, 6066–6071.

    Article  CAS  Google Scholar 

  24. M. Kose, M. Shinoura, Y. Yokoyama and Y. Yokoyama, Diastereoselective photochromism of bisbenzothienylethenes with an oxycarbonyl-related functional group on the side chain, J. Org. Chem. 2004, 69, 8403–8406.

    Article  CAS  Google Scholar 

  25. Y. Tani, T. Ubukata, Y. Yokoyama and Y. Yokoyama, Chiral helicenoid diarylethene with highly diastereoselective photocyclization, J. Org. Chem. 2007, 72, 1639–1644.

    Article  CAS  Google Scholar 

  26. T. Shinozawa, M. K. Hossain, T. Ubukata and Y. Yokoyama, Ultimate diastereoselectivity in the ring closure of photochromic diarylethene possessing facial chirality, Chem. Commun. 2010, 46, 4785–4787.

    Article  Google Scholar 

  27. Y. Yokoyama, T. Shiozawa, Y. Tani and T. Ubukata, A unified strategy for exceptionally high diastereoselectivity in the photochemical ring closure of chiral diarylethenes, Angew. Chem., Int. Ed. 2009, 48, 4521–4523.

    Article  CAS  Google Scholar 

  28. T. Kodani, K. Matsuda, T. Yamada, S. Kobatake and M. Irie, Reversible diastereoselective photocyclization of a diarylethene in a single-crystalline phase, J. Am. Chem. Soc. 2000, 122, 9631–9637.

    Article  CAS  Google Scholar 

  29. S. Yamamoto, K. Matsuda and M. Irie, Diastereoselective cyclization in chiral diarylethene crystals: polymorphism and selectivity, Org. Lett. 2003, 5, 1769–1772.

    Article  CAS  Google Scholar 

  30. K. Uchida, M. Walko, J. J. D. de Jong, S. Sukata, S. Kobatake, A. Meetsma, J. van Esch and B. L. Feringa, Diastereoselective cyclization of a dithienylethene switch through single crystal confinement, Org. Biomol. Chem. 2006, 4, 1002–1006.

    Article  CAS  Google Scholar 

  31. S. Yamamoto, K. Matsuda and M. Irie, Absolute asymmetric photocyclization of a photochromic diarylethene derivatives in single crystals, Angew. Chem., Int. Ed. 2003, 42, 1636–1639.

    Article  CAS  Google Scholar 

  32. M. Morimoto, S. Kobatake and M. Irie, Absolute asymmetric photocyclization in chiral diarylethene co-crystals with octafluoronaphthalene, Chem. Commun. 2008 335–337.

    Google Scholar 

  33. 1,2-Bis[2-methyl-5-(4-pyridyl)-3-thienyl]perfluorocyclopentene which has no methyl groups on pyridine rings was also examined. But the compound did not give cocrystals with BINOL. Introduction of the methyl groups into the pyridine rings is indispensable for forming suitable crystal packing

  34. S. Kobatake, K. Uchida, E. Tsuchida and M. Irie, Single-crystalline photochromism of diarylethenes: reactivity–structure relationship, Chem. Commun. 2002 2804–2805.

    Google Scholar 

  35. S. Kobatake, M. Yamada, T. Yamada and M. Irie, Photochromism of 1,2-bis(2-methyl-6-nitro-1-benzothiophen-3-yl)perfluorocyclopentene in a single-crystalline phase: dichroism of the closed-ring form isomer, J. Am. Chem. Soc. 1999, 121, 8450–8456.

    Article  CAS  Google Scholar 

  36. Although the crystal quality of 1a·(S)-BINOL cocrystal was poor from the viewpoint of X-ray crystallographic analysis, the quality was enough to induce high enantioselectivity over 90% ee in the photocyclization reaction

  37. S. Yamamoto, K. Matsuda and M. Irie, Photochromism of diarylethenes linked by hydrogen bonds in the single-crystalline phase, Chem.–Eur. J. 2003, 9, 4878–4886.

    Article  CAS  Google Scholar 

  38. M. Morimoto, S. Kobatake and M. Irie, Aryl-perfluoroaryl interaction in photochromic diarylethene crystals, Cryst. Growth Des. 2003, 3, 847–854.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Irie.

Additional information

This article was submitted as part of a commemorative issue in honour of Nick Turro.

Electronic supplementary information (ESI) available: General methods, synthetic procedures, X-ray crystallography and spectroscopic data. CCDC 951471–951473. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3pp50239b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichikawa, T., Morimoto, M. & Irie, M. Asymmetric photoreaction of a diarylethene in hydrogen-bonded cocrystals with chiral molecules. Photochem Photobiol Sci 13, 199–204 (2014). https://doi.org/10.1039/c3pp50239b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50239b

Navigation