Skip to main content

Supramolecular Photochirogenesis with Cyclodextrin

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Supramolecular photochirogenesis is a rapidly growing interdisciplinary area of photochemistry, asymmetric synthesis, and supramolecular chemistry. The cooperative noncovalent interactions and confinement of guest substrate(s) with chiral host in both ground and excited states often enable more efficient chirality transfer in supramolecular assemblies than in isotropic media. In supramolecular photochirogenic reactions, overall chirality control is achieved in multiple steps by: (1) thermodynamically preorganizing photosubstrate(s) in the ground state, (2) spectroscopically differentiating the diastereomeric host-guest complex pair by absorbance, and (3) kinetically manipulating the subsequent chemical transformation in the excited state through the weak but nontransient interactions in the chiral supramolecular environment. Thus, all of the ground- and excited-state properties, including the binding affinity and stoichiometry, the chiroptical and photophysical properties, and the photochemical reactivity, jointly affect the stereochemical outcome of photochirogenic reactions. The less significant role of entropy in the photochemical step, due to the confinement, is another unique property of supramolecular photochirogenesis, when compared with the conventional chiral photochemistry. This chapter deals with the chiral supramolecular photoreactions mediated by native and modified cyclodextrins (CDs), one of the most intensively studied chiral host molecules, and covers uni- and bimolecular photoreactions, catalytic photochirogenesis, as well as the wavelength effects on CD-mediated photoreactions reported by early 2019. We also discuss the advantages of using CDs as chiral hosts for photochirogenesis, the factors and plausible mechanisms that lead to highly stereoselective supramolecular photochirogenesis, the challenges and difficulties in achieving efficient chiral induction through CD-based supramolecular photochirogenic systems, and finally the conclusions and the future perspective of this multidisciplinary research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. (a) Griesbeck AG, Mattay J (2005) Synthetic organic photochemistry. Marcel Dekker, New York; (b) Hu R, Zhang C, Pei Z (2013) Mechanistic investigation of light-induced asymmetric hydrogenation of TMSBO by anoxygenic photosynthetic bacteria. Acta Chim Sin 71(7):1064–1070; (c) Tong L, Lu R, Inoue Y (2006) Asymmetric photochemistry with native and modified cyclodextrins. Prog Chem 18(5):533–541; (d) Ma L, Chen B, Wu L, Peng L, Zhang L, Tong Z (2004) Asymmetric photochemical reactions conducted within microreactors. Prog Chem 16(3):386–392; (e) Yang C, Inoue Y (2014) Supramolecular photochirogenesis. Chem Soc Rev 43(12):4123–4143

    Google Scholar 

  2. Inoue Y, Ramamurthy V (2004) Chiral photochemistry. Marcel Dekker, New York

    Book  Google Scholar 

  3. Yang C (2013) Recent progress in supramolecular chiral photochemistry. Chin Chem Lett 24(6):437–441

    Article  Google Scholar 

  4. Yang C, Inoue Y (2011) Supramolecular photochirogenesis. In: Ramamurthy V, Inoue Y (eds) Supramolecular photochemistry: controlling photochemical processes. Wiley, Hoboken, p 115

    Chapter  Google Scholar 

  5. Yang C, Inoue Y Photochirogenesis. In: Griesbeck AG, Oelgemöller M, Ghetti F (eds) CRC handbook of organic photochemistry and photobiology, vol 1, 3rd edn. Taylaor & Francis Group, Boca Raton, p 125

    Google Scholar 

  6. Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed 54(13):3872–3890

    Article  CAS  Google Scholar 

  7. Leibovitch M, Olovsson G, Sundarababu G, Ramamurthy V, Scheffer JR, Trotter J (1996) Asymmetric induction in photochemical reactions conducted in zeolites and in the crystalline state. J Am Chem Soc 118(5):1219–1220

    Article  CAS  Google Scholar 

  8. Kuroda Y, Sera T, Ogoshi H (1991) Regioselectivities and stereoselectivities of singlet oxygen generated by cyclodextrin-sandwiched porphyrin sensitization. Lipoxygenase-like activity. J Am Chem Soc 113(7):2793–2794

    Article  CAS  Google Scholar 

  9. Bach T, Bergmann H, Harms K (2000) Enantioselective intramolecular [2+2]-photocycloaddition reactions in solution. Angew Chem Int Ed 39(13):2302–2304

    Article  CAS  Google Scholar 

  10. Bach T, Bergmann H, Grosch B, Harms K (2002) Highly enantioselective intra- and intermolecular [2 + 2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host-guest interactions, product configuration, and the origin of the stereoselectivity in solution. J Am Chem Soc 124(27):7982–7990

    Article  CAS  Google Scholar 

  11. Shida Y, Kai Y, Kato SY, Misawa A, Amano S, Matsuoka Y, Saigo K (2008) Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew Chem Int Ed 47(43):8241–8245

    Article  Google Scholar 

  12. (a) Shirakawa M, Fujita N, Tani T, Kaneko K, Shinkai S (2005) Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. Chem Commun (33):4149–4151; (b) Yin Y, Jie J, Diao G (2009) Progress of theoretical studies on the inclusion complexes of cyclodextrin and its derivatives. Chemistry 72(4):320–325

    Google Scholar 

  13. (a) Takahashi K (1998) Organic reactions mediated by cyclodextrins. Chem Rev 98(5):2013–2034; (b) Rekharsky VM, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98(5):1875–1917

    Google Scholar 

  14. Koodanjeri S, Ramamurthy V (2002) Cyclodextrin mediated enantio and diastereoselective geometric photoisomerization of diphenylcyclopropane and its derivatives. Tetrahedron Lett 43(50):9229–9232

    Article  CAS  Google Scholar 

  15. Shailaja J, Karthikeyan S, Ramamurthy V (2002) Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridines. Tetrahedron Lett 43(51):9335–9339

    Article  CAS  Google Scholar 

  16. Koodanjeri S, Joy A, Ramamurthy V (2000) Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers. Tetrahedron 56(36):7003–7009

    Article  CAS  Google Scholar 

  17. Vizvardi K, Desmet K, Luyten I, Sandra P, Hoornaert G, Van Der Eycken E (2001) Asymmetric induction in intramolecular meta photocycloaddition: cyclodextrin-mediated solid-phase photochemistry of various phenoxyalkenes. Org Lett 3(8):1173–1175

    Article  CAS  Google Scholar 

  18. Closs GL, Paulson DR (1970) Application of the radical-pair theory of chemically induced dynamic nuclear spin polarization (CIDNP) to photochemical reactions of aromatic aldehydes and ketones. J Am Chem Soc 92(24):7229–7231

    Article  CAS  Google Scholar 

  19. Cocivera M, Trozzolo AM (1970) Photolysis of benzaldehyde in solution studied by nuclear magnetic resonance spectroscopy. J Am Chem Soc 92(6):1772–1774

    Article  CAS  Google Scholar 

  20. Berger M, Goldblatt IL, Steel C (1973) Photochemistry of benzaldehyde. J Am Chem Soc 95(6):1717–1725

    Article  CAS  Google Scholar 

  21. Rao VP, Turro NJ (1989) Asymmetric induction in benzoin by photolysis of benzaldehyde adsorbed in cyclodextrin cavities. Tetrahedron Lett 30(35):4641–4644

    Article  CAS  Google Scholar 

  22. Mori T, Wada T, Inoue Y (2000) Perfect switching of photoreactivity by acid: photochemical decarboxylation versus transesterification of mesityl cyclohexanecarboxylate. Org Lett 2(21):3401–3404

    Article  CAS  Google Scholar 

  23. Mori T, Inoue Y, Weiss RG (2003) Enhanced photodecarboxylation of an aryl ester in polyethylene films. Org Lett 5(24):4661–4664

    Article  CAS  Google Scholar 

  24. Mori T, Weiss RG, Inoue Y (2004) Mediation of conformationally controlled photodecarboxylations of chiral and cyclic aryl esters by substrate structure, temperature, pressure, and medium constraints. J Am Chem Soc 126(29):8961–8975

    Article  CAS  Google Scholar 

  25. Mori T, Saito H, Inoue Y (2003) Complete memory of chirality upon photodecarboxylation of mesityl alkanoate to mesitylalkane: theoretical and experimental evidence for cheletropic decarboxylation via a spiro-lactonic transition state. Chem Commun (18):2302–2303

    Google Scholar 

  26. Mori T, Takamoto M, Wada T, Inoue Y (2003) Acid-controlled photoreactions of aryl alkanoates: competition of transesterification, decarboxylation, Fries-rearrangement and/or transposition. Photochem Photobiol Sci 2(11):1187–1199

    Article  CAS  Google Scholar 

  27. Wei X, Wu W, Matsushita R, Yan Z, Zhou D, Chruma JJ, Nishijima M, Fukuhara G, Mori T, Inoue Y, Yang C (2018) Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J Am Chem Soc 140(11):3959–3974

    Article  CAS  Google Scholar 

  28. Tamaki T, Kokubu T (1984) Acceleration of the photodimerization of water-soluble anthracenes included by β- and γ-cyclodextrins. J Incl Phenom Macrocycl Chem 2(3):815–822

    Article  CAS  Google Scholar 

  29. Tamaki T, Kokubu T, Ichimura K (1987) Regio- and stereoselective photodimerization of anthracene derivatives included by cyclodextrins. Tetrahedron Lett 43(7):1485–1494

    Article  CAS  Google Scholar 

  30. Wakai A, Fukasawa H, Yang C, Mori T, Inoue Y (2012) Theoretical and experimental investigations of circular dichroism and absolute configuration determination of chiral anthracene photodimers. J Am Chem Soc 134(10):4990–4997

    Article  CAS  Google Scholar 

  31. Nakamura A, Inoue Y (2003) Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J Am Chem Soc 125(4):966–972

    Article  CAS  Google Scholar 

  32. Ikeda H, Nihei T, Ueno A (2005) Template-assisted stereoselective photocyclodimerization of 2-anthracenecarboxylic acid by bispyridinio-appended γ-cyclodextrin. J Org Chem 70(4):1237–1242

    Article  CAS  Google Scholar 

  33. Yang C, Fukuhara G, Nakamura A, Origane Y, Fujita K, Yuan DQ, Mori T, Wada T, Inoue Y (2005) Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A,6X-diamino-6A,6X-dideoxy-γ-cyclodextrins: manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochirogenesis. J Photochem Photobiol A Chem 173(3):375–383

    Article  CAS  Google Scholar 

  34. Yang C, Nakamura A, Fukuhara G, Origane Y, Mori T, Wada T, Inoue Y (2006) Pressure and temperature-controlled enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate mediated by secondary face- and skeleton-modified γ-cyclodextrins. J Org Chem 71(8):3126–3136

    Article  CAS  Google Scholar 

  35. (a) Yang C, Nakamura A, Wada T, Inoue Y (2006) Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by γ-cyclodextrins with flexible and rigid cap. Org Lett 8(14):3005–3008; (b) Yang C, Mori T, Inoue Y (2008) Supramolecular enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by capped γ-cyclodextrins: critical control of enantioselectivity by cap rigidity. J Org Chem 73(15):5786–5794

    Google Scholar 

  36. Yang C, Ke C, Fujita K, Yuan DQ, Mori T, Inoue Y (2008) pH-Controlled supramolecular enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate with capped γ-cyclodextrins. Aust J Chem 61(8):565–568

    Article  CAS  Google Scholar 

  37. Ke C, Yang C, Mori T, Wada T, Liu Y, Inoue Y (2009) Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew Chem Int Ed 48(36):6675–6677

    Article  CAS  Google Scholar 

  38. Ke C, Yang C, Liang W, Mori T, Liu Y, Inoue Y (2010) Critical stereocontrol by inter-amino distance of supramolecular photocyclodimerization of 2-anthracenecarboxylate mediated by 6-(ω-aminoalkylamino)-γ-cyclodextrins. New J Chem 34(7):1323–1329

    Article  CAS  Google Scholar 

  39. Wang Q, Yang C, Fukuhara G, Mori T, Liu Y, Inoue Y (2011) Supramolecular FRET photocyclodimerization of anthracenecarboxylate with naphthalene-capped γ-cyclodextrin. Beilstein J Org Chem 7:290–297

    Article  CAS  Google Scholar 

  40. Yao J, Yan Z, Ji J, Wu W, Yang C, Nishijima M, Fukuhara G, Mori T, Inoue Y (2014) Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin. J Am Chem Soc 136(19):6916–6919

    Article  CAS  Google Scholar 

  41. Yi J, Liang W, Wei X, Yao J, Yan Z, Su D, Zhong Z, Gao G, Wu W, Yang C (2018) Switched enantioselectivity by solvent components and temperature in photocyclodimerization of 2-anthracenecarboxylate with 6a,6x-diguanidio-γ-cyclodextrins. Chin Chem Lett 29(1):87–90

    Article  CAS  Google Scholar 

  42. Wang Q, Yang C, Ke C, Fukuhara G, Mori T, Liu Y, Inoue Y (2011) Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by γ-cyclodextrins. Chem Commun 47(24):6849–6851

    Article  CAS  Google Scholar 

  43. Yang C, Wang Q, Yamauchi M, Yao J, Zhou D, Nishijima M, Fukuhara G, Mori T, Liu Y, Inoue Y (2014) Manipulating γ-cyclodextrin-mediated photocyclodimerization of anthracenecarboxylate by wavelength, temperature, solvent and host. Photochem Photobiol Sci 13(2):190–198

    Article  CAS  Google Scholar 

  44. Yang C, Mori T, Origane Y, Ko YH, Selvapalam N, Kim K, Inoue Y (2008) Highly stereoselective photocyclodimerization of α-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J Am Chem Soc 130(27):8574–8575

    Article  CAS  Google Scholar 

  45. Yang C, Ke C, Liang W, Fukuhara G, Mori T, Liu Y, Inoue Y (2011) Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host. J Am Chem Soc 133(35):13786–13789

    Article  CAS  Google Scholar 

  46. Luo L, Cheng SF, Chen B, Tung CH, Wu LZ (2010) Stepwise photochemical chiral delivery in γ-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate in aqueous solution. Langmuir 26(2):782–785

    Article  CAS  Google Scholar 

  47. Liang W, Zhang HH, Wang JJ, Peng Y, Chen B, Yang C, Tung CH, Wu LZ, Fukuhara G, Mori T, Inoue Y (2011) Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified cyclodextrins. Pure Appl Chem 83(4):769–778

    Article  CAS  Google Scholar 

  48. Luo L, Liao G, Wu X, Lei L, Tung C, Wu L (2009) γ-Cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. J Org Chem 74(9):3506–3515

    Article  CAS  Google Scholar 

  49. Fukuhara G, Umehara H, Higashino S, Nishijima M, Yang C, Mori T, Wada T, Inoue Y (2014) Supramolecular photocyclodimerization of 2-hydroxyanthracene with a chiral hydrogen-bonding template, cyclodextrin and serum albumin. Photochem Photobiol Sci 13(2):162–171

    Article  CAS  Google Scholar 

  50. Inoue Y, Kosaka S, Matsumoto K, Tsuneishi H, Hakushi T, Tai A, Nakagawa K, Tong L (1993) Vacuum UV photochemistry in cyclodextrin cavities. Solid-state Z-E photoisomerization of a cyclooctene-β-cyclodextrin inclusion complex. J Photochem Photobiol A Chem 71(1):61–64

    Article  CAS  Google Scholar 

  51. Inoue Y, Dong F, Yamamoto Y, Tong L-H, Tsuneishi H, Hakushi T, Tai A (1995) Inclusion-enhanced optical yield and E/Z ratio in enantiodifferentiating photoisomerization of cyclooctene included and sensitized by β-cyclodextrin monobenzoate. J Am Chem Soc 117(44):11033–11034

    Article  CAS  Google Scholar 

  52. Inoue Y, Wada T, Sugahara N, Yamamoto K, Kimura K, Tong LH, Gao XM, Hou ZJ, Liu Y (2000) Supramolecular photochirogenesis. 2. Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by 6-O-modified cyclodextrins. J Org Chem 65(23):8041–8050

    Article  CAS  Google Scholar 

  53. Fukuhara G, Mori T, Wada T, Inoue Y (2006) Entropy-controlled supramolecular photochirogenesis: enantiodifferentiating Z-E photoisomerization of cyclooctene included and sensitized by permethylated 6-O-modified β-cyclodextrins. J Org Chem 71(21):8233–8243

    Article  CAS  Google Scholar 

  54. Lu R, Yang C, Cao Y, Wang Z, Wada T, Jiao W, Mori T, Inoue Y (2008) Supramolecular enantiodifferentiating photoisomerization of cyclooctene with modified β-cyclodextrins: critical control by a host structure. Chem Commun (3):374–376

    Google Scholar 

  55. Fukuhara G, Mori T, Wada T, Inoue Y (2005) Entropy-controlled supramolecular photochirogenesis: enantiodifferentiating Z-E photoisomerization of cyclooctene included and sensitized by permethylated 6-O-benzoyl-β-cyclodextrin. Chem Commun (33):4199–4201

    Google Scholar 

  56. Lu R, Yang C, Cao Y, Wang Z, Wada T, Jiao W, Mori T, Inoue Y (2008) Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by aroyl-β-cyclodextrins: a critical enantioselectivity control by substituents. J Org Chem 73(19):7695–7701

    Article  CAS  Google Scholar 

  57. Gao Y, Wada T, Yang K, Kim K, Inoue Y (2005) Supramolecular photochirogenesis in sensitizing chiral nanopore: enantiodifferentiating photoisomerization of (Z)-cyclooctene included and sensitized by POST-1. Chirality 17(S1):S19–S23

    Article  CAS  Google Scholar 

  58. Gao Y, Inoue M, Wada T, Inoue Y (2004) Supramolecular photochirogenesis. 3. Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by 6-O-mono(o-methoxybenzoyl)cyclodextrin. J Incl Phenom Macrocycl Chem 50(1):111–114

    CAS  Google Scholar 

  59. Inoue Y, Yokoyama T, Yamasaki N, Tai A (1989) Temperature switching of product chirality upon photosensitized enantiodifferentiating cis-trans isomerization of cyclooctene. J Am Chem Soc 111(16):6480–6482

    Article  CAS  Google Scholar 

  60. Inoue Y, Yamasaki N, Yokoyama T, Tai A (1993) Highly enantiodifferentiating photoisomerization of cyclooctene by congested and/or triplex-forming chiral sensitizers. J Org Chem 58(5):1011–1018

    Article  CAS  Google Scholar 

  61. Inoue Y, Ikeda H, Kaneda M, Sumimura T, Everitt SRL, Wada T (2000) Entropy-controlled asymmetric photochemistry: switching of product chirality by solvent. J Am Chem Soc 122(2):406–407

    Article  CAS  Google Scholar 

  62. Wei X, Yu X, Zhang Y, Liang W, Ji J, Yao J, Rao M, Wu W, Yang C (2019) Enhanced irregular photodimers and switched enantioselectivity by solvent and temperature in the photocyclodimerization of 2-anthracenecarboxylate with modified β-cyclodextrins. J Photoch Photobio A 371:374–381

    Article  CAS  Google Scholar 

  63. Kaneda M, Nishiyama Y, Asaoka S, Mori T, Wada T, Inoue Y (2004) Pressure control of enantiodifferentiating polar addition of 1,1-diphenylpropene sensitized by chiral naphthalenecarboxylates. Org Biomol Chem 2(9):1295–1303

    Article  CAS  Google Scholar 

  64. Inoue Y, Tsuneishi H, Hakushi T, Tai A (1997) Optically active (E,Z)-1,3-cyclooctadiene: first enantioselective synthesis through asymmetric photosensitization and chiroptical property. J Am Chem Soc 119(3):472–478

    Article  CAS  Google Scholar 

  65. Yang C, Mori T, Wada T, Inoue Y (2007) Supramolecular enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene included and sensitized by naphthalene-modified cyclodextrins. New J Chem 31(5):697–702

    Article  CAS  Google Scholar 

  66. Yan Z, Huang Q, Liang W, Yu X, Zhou D, Wu W, Chruma JJ, Yang C (2017) Enantiodifferentiation in the photoisomerization of (Z,Z)-1,3-cyclooctadiene in the cavity of γ-cyclodextrin-cucurbit[6]uril-wheeled [4]rotaxanes with an encapsulated photosensitizer. Org Lett 19(4):898–901

    Article  CAS  Google Scholar 

  67. Liang W, Yang C, Nishijima M, Fukuhara G, Mori T, Mele A, Castiglione F, Caldera F, Trotta F, Inoue Y (2012) Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene. Beilstein J Org Chem 8:1305–1311

    Article  CAS  Google Scholar 

  68. Liang W, Yang C, Zhou D, Haneoka H, Nishijima M, Fukuhara G, Mori T, Castiglione F, Mele A, Caldera F (2013) Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem Commun 49(34):3510–3512

    Article  CAS  Google Scholar 

  69. Rao M, Kanagaraj K, Fan C, Ji C, Xiao C, Wei X, Wu W, Yang C (2018) Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet-triplet annihilation. Org Lett 20(6):1680–1683

    Article  CAS  Google Scholar 

  70. Kawanami Y, Katsumata K, Nishijima M, Fukuhara G, Asano K, Suzuki T, Yang C, Nakamura A, Mori T, Inoue Y (2016) Supramolecular photochirogenesis with a higher-order complex: highly accelerated exclusively head-to-head photocyclodimerization of 2-anthracenecarboxylic acid via 2:2 complexation with prolinol. J Am Chem Soc 138(37):12187–12201

    Article  CAS  Google Scholar 

  71. Yan Z, Wu W, Yang C, Inoue Y (2015) Catalytic supramolecular photochirogenesis. Supramol Catal 2(1):9–24

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of this work by the National Natural Science Foundation of China (No. 21871194, 21572142, 21372165, 21402129 and 21402110), the National Key Research and Development Program of China (No. 2017YFA0505903), and the Science & Technology Department of Sichuan Province (2019YJ0160, 2019YJ0090, 2017SZ0021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihisa Inoue or Cheng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yao, J., Inoue, Y., Yang, C. (2019). Supramolecular Photochirogenesis with Cyclodextrin. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics