Skip to main content
Log in

Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

One environmental concern related to hospital effluents is discharge of them without preliminary treatment. Antimicrobial photodynamic inactivation (PDI) may represent an alternative to the traditional expensive, unsafe and not always effective disinfection methods. The main goal of this work was to assess the efficiency of PDI on clinical multidrug-resistant (MDR) bacteria in hospital wastewaters in order to evaluate its potential use in treating hospital effluents. The efficiency of PDI was assessed using a cationic porphyrin as the photosensitizer (PS), four MDR bacteria either in phosphate buffered saline or in filtrated hospital wastewaters. The synergistic effect of PDI and antibiotics (ampicillin and chloramphenicol) was also evaluated, as well as the effect of the surfactant sodium dodecyl sulfate (SDS). The results show the efficient inactivation of MDR bacteria in PBS (reduction of 6–8 log after 270 min of irradiation at 40 W m−2 with 5.0 μM of PS). In wastewater, the inactivation of the four MDR bacteria was again efficient and the decrease in bacterial survival starts even sooner. A faster decrease in bacterial survival occurred when PDI was combined with the addition of antibiotics, at sub-inhibitory and inhibitory concentrations, but the SDS did not affect the PDI efficiency. It can be concluded that PDI has potential to be an effective alternative for the inactivation of MDR bacteria in hospital wastewaters and that the presence of antibiotics may enhance its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDR:

Multidrug-resistant

PBS:

Phosphate buffered saline

PDI:

Photodynamic inactivation

PS:

Photosensitizer

SDS:

Sodium dodecyl sulfate

References

  1. B. Pauwels, and W. Verstraete, The treatment of hospital wastewater: an appraisal, J. Water Health, 2006, 4, 405–416.

    Article  CAS  Google Scholar 

  2. M. G. S. Ortolan, M. A. Z. Ayub, Cytotoxicity and genotoxicity of untreated hospital effluents, Braz. Arch. Biol. Technol., 2007, 50, 637–643.

    Article  Google Scholar 

  3. F. Baquero, J. L. Martínez, R. Cantón, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 2008, 19(3), 260–265.

    Article  CAS  Google Scholar 

  4. A. Pal, K. Y. H. Gin, A. Y.-C. Lin, and M. Reinhard, Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects, Sci. Total Environ., 2010, 408(24), 6062–6069.

    Article  CAS  Google Scholar 

  5. C. Boillot, C. Bazin, F. Tissot-Guerraz, J. Droguet, M. Perraud, and J. C. Cetre, et al., Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities, Sci. Total Environ., 2008, 403 1–3, 113–129.

    Article  CAS  Google Scholar 

  6. K. Kümmerer, Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources–a review, Chemosphere, 2001, 45 6–7, 957–969.

    Article  Google Scholar 

  7. C. Darcy, I. Lescure, V. Payot, and G. Rouland, Effluents des etablissements hospitaliers: teneur en microorganismes pathogenes: risques sanitaires, procedures particulieres d’epuration et de gestion des boues, Office International de l’eau, Limoges, 2002.

    Google Scholar 

  8. K. Kümmerer, Pharmaceuticals in the Environment, Annu. Rev. Environ. Resour., 2010, 35(1), 57–75.

    Article  Google Scholar 

  9. K. D. Brown, J. Kulis, B. Thomson, T. H. Chapman, and D. B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 2006, 366 2–3, 772–783.

    Article  CAS  Google Scholar 

  10. Q. Xu, M. Nakajima, Z. Liu, and T. Shiina, Biosurfactants for Microbubble Preparation and Application, Int. J. Mol. Sci., 2011, 12(1), 462–475.

    Article  CAS  Google Scholar 

  11. N. J. Rowan, Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks, Int. J. Microbiol., 2011, 462832.

    Google Scholar 

  12. J. J. Macauley, Z. Qiang, C. D. Adams, R. Surampalli, and M. R. Mormile, Disinfection of swine wastewater using chlorine, ultraviolet light and ozone, Water Res., 2006, 40(10), 2017–2026.

    Article  CAS  Google Scholar 

  13. M. R. Hamblin, and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3(5), 436–450.

    Article  CAS  Google Scholar 

  14. A. Almeida, A. Cunha, N. C. Gomes, E. Alves, L. Costa, M. A. F. Faustino, Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants, Mar. Drugs, 2009, 7(3), 268–313.

    Article  CAS  Google Scholar 

  15. A. Almeida, A. Cunha, M. A. F. Faustino, A. C. Tomé, and M. G. P. M. S. Neves, Photodynamic Inactivation of Microbial Pathogens, in Medical and Environmental Applications, ed. M. R. Hambin and G. Jori, The Royal Society of Chemistry, 2011, pp. 83–160.

    Google Scholar 

  16. A. Tavares, C. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, N. C. Gomes, E. Alves, and A. Almeida, Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment, Mar. Drugs, 2010, 8(1), 91–105.

    Article  CAS  Google Scholar 

  17. L. Costa, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, M. A. F. Faustino, A. Cunha, N. C. Gomes, and A. Almeida, Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT, Antiviral Res., 2011, 91(3), 278–282.

    Article  CAS  Google Scholar 

  18. B. Xing, T. Jiang, W. Bi, Y. Yang, L. Li, and M. Ma, et al., Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria, Chem. Commun., 2011, 47(5), 1601–1603.

    Article  CAS  Google Scholar 

  19. A. Di Poto, M. S. Sbarra, G. Provenza, L. Visai, and P. Speziale, The effect of photodynamic treatment combined with antibiotic action or host defense mechanisms on Staphylococcus aureus biofilms, Biomaterials, 2009, 30(18), 3158–3166.

    Article  Google Scholar 

  20. Z. Malik, and Y. Nitzan, Synergistic Antibiotic Compositions Containing a Perphyrin and an Antibiotic, WO Patent, WO/1995/033,463, 1995.

    Google Scholar 

  21. C. Carvalho, A. T. P. Gomes, S. C. D. Fernandes, A. C. B. Prata, A. Almeida, and A. Cunha, et al., Photoinactivation of Bacteria in Wastewater by Porphyrins: Bacterial β-Galactosidase Activity and Leucine-Uptake as Methods to Monitor the Process, J. Photochem. Photobiol., B, 2007, 88 2–3, 112–118.

    Article  CAS  Google Scholar 

  22. M. C. Gomes, S. M. Woranovicz-Barreira, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, et al., Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 1735–1743.

    Google Scholar 

  23. CLSI, Clinical and Laboratory Standard Institute, Performance standards for Antimicrobial Susceptibility Testing, Wayne, PA, 2010.

    Google Scholar 

  24. C. Arrojado, C. Pereira, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, et al., Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems, Photochem. Photobiol. Sci., 2011, 10(10), 1691–1700.

    Article  CAS  Google Scholar 

  25. J. Vila, S. Martí, J. Sánchez-Céspedes, Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii, J. Antimicrob. Chemother., 2007, 59(6), 1210–1215.

    Article  CAS  Google Scholar 

  26. E. Alves, M. A. F. Faustino, P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, et al., Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri, PLoS One, 2011, 6(6), e20970.

    Article  CAS  Google Scholar 

  27. M. Jemli, Z. Alouini, S. Sabbahi, and M. Gueddari, Destruction of fecal bacteria in wastewater by three photosensitizers, J. Environ., 2002, 4(4), 511–516.

    CAS  Google Scholar 

  28. E. Elmolla, and M. Chaudhuri, Antibiotics wastewater treatment, Shah Alam, Malaysia, 2008.

    Google Scholar 

  29. D. C. Barber, R. A. Freitag-Beeston, and D. G. Whitten, Atropisomer-specific formation of premicellar porphyrin J-aggregates in aqueous surfactant solutions, J. Phys. Chem., 1991, 95(10), 4074–4086.

    Article  CAS  Google Scholar 

  30. L. Costa, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, et al., Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters, Photochem. Photobiol. Sci., 2010, 9(8), 1126–1133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria A. F. Faustino or Adelaide Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, J., Tomé, J.P.C., Neves, M.G.P.M.S. et al. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochem Photobiol Sci 13, 626–633 (2014). https://doi.org/10.1039/c3pp50195g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50195g

Navigation