Skip to main content
Log in

Optimal dye-quencher pairs for the design of an “activatable” nanoprobe for optical imaging

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Optical imaging offers high sensitivity and portability at low cost. The design of an optimal “activatable” imaging agent could greatly decrease the background noise and increase specificity of the signal. Five different molecules have been used to quench basal fluorescence of an enzyme substrate labeled with Cy5, Cy5.5 or IR800 at a distance of 8 amino acids (32 Å): a 6 nm gold nanoparticle (NP), a 20 nm and a 30 nm iron oxide (FeO) NP, the black hole quencher BHQ-3 and the IRdye quencher QC-1. The quenching efficiencies were 99% for QC1-IR800, 98% for QC1-Cy5.5, 96% for 30 nm FeO NP-Cy5.5, 89% for BHQ3-Cy5, 84% for BHQ3-Cy5.5, 77-90% for 6 nm gold NP-Cy5.5, depending on the number of dyes around the NP, 79% for 20 nm FeO NP-Cy5.5 and 77% for Cy5.5-Cy5. Signal activation upon cleavage by the matrix metalloproteinase MMP9 was proportional to the quenching efficiencies, ranging from 3-fold with Cy5.5-Cy5 to 67-fold with QC1-IR800. This independent work reports on the properties of the dyes and quenchers explaining the superior performance of QC-1 and 30 nm FeO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. S. Netzel-Arnett, S. K. Mallya, H. Nagase, H. Birkedal-Hansen, H. E. Van Wart, Anal. Biochem., 1991, 195, 86–92.

    Article  CAS  Google Scholar 

  2. W. R. Algar, A. P. Malanoski, K. Susumu, M. H. Stewart, N. Hildebrandt and I. L. Medintz, Anal. Chem., 2012, 84, 10136–10146.

    Article  CAS  Google Scholar 

  3. K. Boeneman, B. C. Mei, A. M. Dennis, G. Bao, J. R. Deschamps, H. Mattoussi and I. L. Medintz, J. Am. Chem. Soc., 2009, 131, 3828–3829.

    Article  CAS  Google Scholar 

  4. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson and H. Mattoussi, Nat. Mater., 2006, 5, 581–589.

    Article  CAS  Google Scholar 

  5. I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. Blanco-Canosa, P. E. Dawson and H. Mattoussi, Nat. Mater., 2010, 9, 676–684.

    Article  CAS  Google Scholar 

  6. J. Han, A. Loudet, R. Barhoumi, R. C. Burghardt and K. Burgess, J. Am. Chem. Soc., 2009, 131, 1642–1643.

    Article  CAS  Google Scholar 

  7. M. K. Johansson, H. Fidder, D. Dick and R. M. Cook, J. Am. Chem. Soc., 2002, 124, 6950–6956.

    Article  CAS  Google Scholar 

  8. M. Ogawa, N. Kosaka, P. L. Choyke and H. Kobayashi, ACS Chem. Biol., 2009, 4, 535–546.

    Article  CAS  Google Scholar 

  9. S. Prahl, compiled from the data provided by W. B. Gratzer and N. Kollias, Available at http://omlc.ogi.edu/spectra/hemoglobin/summary.html.

  10. G. M. Hale and M. R. Querry, Appl. Opt., 1973, 12, 555–563.

    Article  CAS  Google Scholar 

  11. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra and G. B. Behera, Chem. Rev., 2000, 100, 1973–2012.

    Article  CAS  Google Scholar 

  12. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, J. Am. Chem. Soc., 2005, 127, 3115–3119.

    Article  CAS  Google Scholar 

  13. X. Liu, M. Atwater, J. Wang and Q. Huo, Colloids Surf., B: Biointerfaces, 2007, 58, 3–7.

    Article  CAS  Google Scholar 

  14. Y. Q. He, S. P. Liu, L. Kong and Z. F. Liu, Spectrochim. Acta, Part A, 2005, 61, 2861–2866.

    Article  Google Scholar 

  15. P. Ray, G. Darbha, A. Ray, J. Walker and W. Hardy, Plasmonics, 2007, 2, 173–183.

    Article  CAS  Google Scholar 

  16. M. Ogawa, C. A. Regino, P. L. Choyke and H. Kobayashi, Mol. Cancer Ther., 2009, 8, 232–239.

    Article  CAS  Google Scholar 

  17. M. Ogawa, N. Kosaka, P. L. Choyke and H. Kobayashi, Cancer Res., 2009, 69, 1268–1272.

    Article  CAS  Google Scholar 

  18. F. A. Jaffer, D. E. Kim, L. Quinti, C. H. Tung, E. Aikawa, A. N. Pande, R. H. Kohler, G. P. Shi, P. Libby and R. Weissleder, Circulation, 2007, 115, 2292–2298.

    Article  CAS  Google Scholar 

  19. X. Peng, H. Chen, D. R. Draney, W. Volcheck, A. Schutz-Geschwender and D. M. Olive, Anal. Biochem., 2009, 388, 220–228.

    Article  CAS  Google Scholar 

  20. C. Bremer, S. Bredow, U. Mahmood, R. Weissleder and C. H. Tung, Radiology, 2001, 221, 523–529.

    Article  CAS  Google Scholar 

  21. I. Selo, L. Negroni, C. Creminon, J. Grassi and J. M. Wal, J. Immunol. Methods, 1996, 199, 127–138.

    Article  CAS  Google Scholar 

  22. S. J. Kridel, E. Chen, L. P. Kotra, E. W. Howard, S. Mobashery and J. W. Smith, J. Biol. Chem., 2001, 276, 20572–20578.

    Article  CAS  Google Scholar 

  23. A. Prudova, U. auf dem Keller, G. S. Butler and C. M. Overall, Mol. Cell Proteomics, 2010, 9, 894–911.

    Article  CAS  Google Scholar 

  24. M. K. Johansson, Methods Mol. Biol., 2006, 335, 17–29.

    CAS  PubMed  Google Scholar 

  25. R. Lebel, M. A. Bonin, R. Zriba, A. Radulska, W. Neugebauer and M. Lepage, Contrast. Media Mol. Imaging, 2012, 7, 328–337.

    Article  CAS  Google Scholar 

  26. K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, E. M. Sevick-Muraca, J. Biomed. Opt., 2007, 12, 024017.

    Article  Google Scholar 

  27. K. E. Linder, E. Metcalfe, P. Nanjappan, T. Arunachalam, K. Ramos, T. M. Skedzielewski, E. R. Marinelli, M. F. Tweedle, A. D. Nunn and R. E. Swenson, Bioconjug. Chem., 2011, 22, 1287–1297.

    Article  CAS  Google Scholar 

  28. L. Niedzwiecki, J. Teahan, R. K. Harrison and R. L. Stein, Biochemistry, 1992, 31, 12618–12623.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abedelnasser Abulrob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simard, B., Tomanek, B., van Veggel, F.C.J.M. et al. Optimal dye-quencher pairs for the design of an “activatable” nanoprobe for optical imaging. Photochem Photobiol Sci 12, 1824–1829 (2013). https://doi.org/10.1039/c3pp50118c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50118c

Navigation