Skip to main content

Advertisement

Log in

UV-irradiated 7-dehydrocholesterol coating on polystyrene surfaces is converted to active vitamin D by osteoblastic MC3T3-E1 cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine the effects of UV irradiation on the conversion of 7-dehydrocholesterol (7-DHC), which has been coated onto a polystyrene surface, to cholecalciferol (D3), and the resulting effect on the formation of vitamin D (1,25-D3) by MC3T3-E1 cells. The changes in gene expression of the enzymes regulating its hydroxylation, Cyp27b1 and Cyp27a1, were monitored as well as the net effect of the UV-treated 7-DHC coating on cell viability and osteoblast differentiation. MC3T3-E1 cells were found to express the enzymes required for synthesizing active 1,25-D3, and we found a dose-dependent increase in the production of both 25-D3 and 1,25-D3 levels for UV-activated 7-DHC samples unlike UV-untreated ones. Cell viability revealed no cytotoxic effect for any of the treatments, but only for the highest dose of 7-DHC (20 nmol per well) that was UV-irradiated. Furthermore, osteoblast differentiation was increased in cells treated with some of the higher doses of 7-DHC when UV-irradiated, as shown by collagen-I, osterix and osteocalcin relative mRNA levels. The conversion of 7-DHC to preD3 exogenously by UV irradiation and later to 25-D3 by MC3T3-E1 cells was determined for the optimum 7-DHC dose (0.2 nmol per well), i.e. 8.6 ± 0.7% of UV-activated 7-DHC was converted to preD3 and 6.7 ± 2.8% of preD3 was finally converted to 25-D3 under the conditions studied. In conclusion, we demonstrate that an exogenous coating of 7-DHC, when UV-irradiated, can be used to endogenously produce active vitamin D. We hereby provide the scientific basis for UV-activated 7-DHC coating as a feasible approach for implant therapeutics focused on bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

7-DHC:

7-Dehydrocholesterol

D3:

Cholecalciferol

25-D3:

25-Hydroxyvitamin D3

1,25-D3:

1,25-Dihydroxyvitamin D3

Cyp27a1:

Vitamin D3 25-hydroxylase

Cyp27b1:

25-Hydroxyvitamin D3-1alpha-hydroxylase

References

  1. G. J. Atkins, P. H. Anderson, D. M. Findlay, K. J. Welldon, C. Vincent, A. C. Zannettino, P. D. O’Loughlin and H. A. Morris, Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3, Bone, 2007, 40, 1517–1528.

    Article  CAS  PubMed  Google Scholar 

  2. R. St-Arnaud, The direct role of vitamin D on bone homeostasis, Arch. Biochem. Biophys., 2008, 473, 225–230.

    Article  CAS  PubMed  Google Scholar 

  3. B. E. C. Nordin and H. A. Morris, Osteoporosis and vitamin D, J. Cell. Biochem., 1992, 49, 19–25.

    Article  CAS  PubMed  Google Scholar 

  4. D. Ayyar, F. Floyd, D. Barwick, P. Hudgson and D. Weightman, Myopathy in chronic renal failure, Q. J. Med., 1974, XLIII, 509–524.

    Google Scholar 

  5. P. Irani, Electromyography in nutritional osteomalaic myopathy, J. Neurol. Neurosurg. Psychiatry, 1976, 686–693.

    Google Scholar 

  6. L. Ceglia, Vitamin D and skeletal muscle tissue and function, Mol. Aspects Med., 2008, 29, 407–414.

    Article  CAS  PubMed  Google Scholar 

  7. J. B. Eastwood, P. J. Bordier and E. M. Clarkson, The contrasting effects on bone histology of vitamin D and of calcium carbonate in the osteomalacia of chronic renal failure, Clin. Sci. Mol. Med., 1974, 47, 23–42.

    CAS  PubMed  Google Scholar 

  8. J. B. Eastwood, T. C. B. Stamp, H. E. De Wardener, The effect of 25 hydroxy vitamin D3 in the osteomalacia of chronic renal failure, Clin. Sci. Mol. Med., 1977, 52, 499–508.

    CAS  PubMed  Google Scholar 

  9. M. Samson, H. J. J. Verhaar, P. A. F. Jansen, P. L. de Vreede, J. W. Manten and S. A. Duursma, Muscle strength, functional mobility and vitamin D in older women, Aging Clin. Exp. Res., 2000, 12, 455–460.

    Article  Google Scholar 

  10. M. Pfeifer, B. Begerow, H. W. Minne, C. Abrams, D. Nachtigall and C. Hansen, Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women, J. Bone Miner. Res., 2000, 15, 1113–1118.

    Article  CAS  PubMed  Google Scholar 

  11. M. F. Holick, Vitamin D: its role in cancer prevention and treatment, Prog. Biophys. Mol. Biol., 2006, 92, 49–59.

    Article  CAS  PubMed  Google Scholar 

  12. J. S. Adams and M. Hewison, Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity, Nat. Clin. Pract. Endocrinol. Metab., 2008, 4, 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. L. Omdahl, H. A. Morris and B. K. May, Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation, Annu. Rev. Nutr., 2002, 22, 139–166.

    Article  CAS  PubMed  Google Scholar 

  14. P. H. Anderson, S. Iida, J. H. T. Tyson, A. G. Turner and H. A. Morris, Bone CYP27B1 gene expression is increased with high dietary calcium and in mineralising osteoblasts, J. Steroid. Biochem. Mol. Biol., 2010, 121, 71–75.

    Article  CAS  PubMed  Google Scholar 

  15. I. Aiba, T. Yamasaki, T. Shinki, S. Izumi, K. Yamamoto, S. Yamada, H. Terato, H. Ide and Y. Ohyama, Characterization of rat and human CYP2J enzymes as vitamin D 25-hydroxylases, Steroids, 2006, 71, 849–856.

    Article  CAS  PubMed  Google Scholar 

  16. B. Lehmann and M. Meurer, Extrarenal sites of calcitriol synthesis: the particular role of the skin, Recent Results Cancer Res., 2003, 164, 135–145.

    Article  CAS  PubMed  Google Scholar 

  17. M. Schuessler, N. Astecker, G. Herzig, G. Vorisek and I. Schuster, Skin is an autonomous organ in synthesis, two-step activation and degradation of vitamin D3: CYP27 in epidermis completes the set of essential vitamin D3-hydroxylases, Steroids, 2001, 66, 399–408.

    Article  CAS  PubMed  Google Scholar 

  18. D. D. Bikle, Vitamin D regulated keratinocyte differentiation, J. Cell. Biochem., 2004, 92, 436–444.

    Article  CAS  PubMed  Google Scholar 

  19. B. W. Hollis, 25-Hydroxyvitamin D3-1a-hydroxylase in porcine hepatic tissue: subcellular localization to both mitochondria and microsomes, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 6009–6013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. Zehnder, R. Bland, M. C. Williams, R. W. McNinch, A. J. Howie, P. M. Stewart and M. Hewison, Extrarenal expression of 25-hydroxyvitamin D3-1a-hydroxylase, J. Clin. Endocrinol. Metab., 2001, 86, 888–894.

    CAS  PubMed  Google Scholar 

  21. M. Hewison, L. Freeman, S. V. Hughes, K. N. Evans, R. Bland, A. G. Eliopoulos, M. D. Kilby, P. A. H. Moss and R. Chakraverty, Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells, J. Immunol., 2003, 170, 5382–5390.

    Article  CAS  PubMed  Google Scholar 

  22. S. Hansdottir, M. M. Monick, S. L. Hinde, N. Lovan, D. C. Look and G. W. Hunninghake, Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense, J. Immunol., 2008, 181, 7090–7099.

    Article  CAS  PubMed  Google Scholar 

  23. G. A. Howard, R. T. Turner, D. J. Sherrard and D. J. Baylink, Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, J. Biol. Chem., 1981, 256, 7738–7740.

    Article  CAS  PubMed  Google Scholar 

  24. F. Ichikawa, K. Sato, M. Nanjo, Y. Nishii, T. Shinki, N. Takahashi and T. Suda, Mouse primary osteoblasts express vitamin D3 25-hydroxylase mRNA and convert 1a-hydroxyvitamin D3 into 1a,25-dihydroxyvitamin D3, Bone, 1995, 16, 129–135.

    Article  CAS  PubMed  Google Scholar 

  25. D. K. Panda, S. A. Kawas, M. F. Seldin, G. N. Hendy and D. Goltzman, 25-Hydroxyvitamin D 1a-hydroxylase: structure of the mouse gene, chromosomal assignment, and developmental expression, J. Bone Miner. Res., 2001, 16, 46–56.

    Article  CAS  PubMed  Google Scholar 

  26. P. H. Anderson, P. D. O’Loughlin, B. K. May and H. A. Morris, Modulation of CYP27B1 and CYP24 mRNA expression in bone is independent of circulating 1,25(OH)2D3 levels, Bone, 2005, 36, 654–662.

    Article  CAS  PubMed  Google Scholar 

  27. M. Van Driel, H. A. P. Pols, J. P. T. M. Van Leeuwen, Osteoblast differentiation and control by vitamin D and vitamin D metabolites, Curr. Pharm. Des., 2004, 10, 2535–2555.

    Article  PubMed  Google Scholar 

  28. M. Van Driel, M. Koedam, C. J. Buurman, M. Hewison, H. Chiba, A. G. Uitterlinden, H. A. P. Pols, J. P. T. M. Van Leeuwen, Evidence for auto/paracrine actions of vitamin D in bone: 1a-Hydroxylase expression and activity in human bone cells, FASEB J., 2006, 20, E1811–E1819.

    Article  CAS  Google Scholar 

  29. V. J. Woeckel, R. D. A. M. Alves, S. M. A. Swagemakers, M. Eijken, H. Chiba, B. C. J. Van Der Eerden, J. P. T. M. Van Leeuwen, 1a,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles, J. Cell. Physiol., 2010, 225, 593–600.

    Article  CAS  PubMed  Google Scholar 

  30. P. H. Anderson, S. Iida, J. H. T. Tyson, A. G. Turner and H. A. Morris, Bone CYP27B1 gene expression is increased with high dietary calcium and in mineralising osteoblasts, J. Steroid Biochem. Mol. Biol., 2010, 121, 71–75.

    Article  CAS  PubMed  Google Scholar 

  31. M. F. Holick, J. A. MacLaughlin and M. B. Clark, Photosynthesis of previtamin D3 in human skin and the physiologic consequences, Science, 1980, 210, 203–205.

    Article  CAS  PubMed  Google Scholar 

  32. M. K. Nemanic, J. Whitney and P. M. Elias, In vitro synthesis of vitamin D-3 by cultured human keratinocytes and fibroblasts: action spectrum and effect of AY-9944, Biochim. Biophys. Acta, Gen. Subj., 1985, 841, 267–277.

    Article  CAS  Google Scholar 

  33. B. Lehmann, T. Genehr, P. Knuschke, J. Pietzsch and M. Meurer, UVB-induced conversion of 7-dehydrocholesterol to 1a,25- dihydroxyvitamin D3 in an in vitro human skin equivalent model, J. Invest. Dermatol., 2001, 117, 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  34. J. A. MacLaughlin, R. R. Anderson and M. F. Holick, Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin, Science, 1982, 216, 1001–1003.

    Article  CAS  Google Scholar 

  35. L. Xu, Z. Korade and N. A. Porter, Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: product and mechanistic studies, J. Am. Chem. Soc., 2010, 132, 2222–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. E. MacDonald, B. E. Rapuano, N. Deo, M. Stranick, P. Somasundaran and A. L. Boskey, Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment, Biomaterials, 2004, 25, 3135–3146.

    Article  CAS  PubMed  Google Scholar 

  37. N. Håkan, Initial reactions of whole blood with hydrophilic and hydrophobic titanium surfaces, Colloids Surf., B, 1996, 6, 329–333.

    Article  Google Scholar 

  38. I. Schuster, H. Egger, D. Bikle, G. Herzig, G. S. Reddy, A. Stuetz, P. Stuetz and G. Vorisek, Selective inhibition of vitamin D hydroxylases in human keratinocytes, Steroids, 2001, 66, 409–422.

    Article  CAS  PubMed  Google Scholar 

  39. P. Tarroni, I. Villa, E. Mrak, F. Zolezzi, M. Mattioli, C. Gattuso and A. Rubinacci, Microarray analysis of 1,25(OH)2D3 regulated gene expression in human primary osteoblasts, J. Cell. Biochem., 2011, 640–649.

    Google Scholar 

  40. G. S. Stein, J. B. Lian, J. L. Stein, A. J. Van Wijnen and M. Montecino, Transcriptional control of osteoblast growth and differentiation, Physiol. Rev., 1996, 76, 593–629.

    Article  CAS  PubMed  Google Scholar 

  41. A. Ulsamer, M. J. Ortuno, S. Ruiz, A. R. G. Susperregui, N. Osses, J. L. Rosa and F. Ventura, BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38, J. Biol. Chem., 2008, 283, 3816–3826.

    Article  CAS  PubMed  Google Scholar 

  42. T. L. Chen and D. Fry, Hormonal regulation of the osteoblastic phenotype expression in neonatal murine calvarial cells, Calcif. Tissue Int., 1999, 64, 304–309.

    Article  CAS  PubMed  Google Scholar 

  43. N. Kurihara, S. Ishizuka, M. Kiyoki, Y. Haketa, K. Ikeda and M. Kumegawa, Effects of 1,25-dihydroxyvitamin D3 on osteoblastic MC3T3-E1 cells, Endocrinology, 1986, 118, 940–947.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Maehata, S. Takamizawa, S. Ozawa, Y. Kato, S. Sato, E. Kubota and R. I. Hata, Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor, Matrix Biol., 2006, 25, 47–58.

    Article  CAS  PubMed  Google Scholar 

  45. T. Matsumoto, C. Igarashi, Y. Takeuchi, S. Harada, T. Kikuchi, H. Yamato and E. Ogata, Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells, Bone, 1991, 12, 27–32.

    Article  CAS  PubMed  Google Scholar 

  46. R. L. Jilka, G. Hangoc, G. Girasole, G. Passeri, D. C. Williams, J. S. Abrams, B. Boyce, H. Broxmeyer and S. C. Manolagas, Increased osteoclast development after estrogen loss: mediation by interleukin-6, Science, 1992, 257, 88–91.

    Article  CAS  PubMed  Google Scholar 

  47. O. Kozawa, H. Tokuda, T. Kaida, H. Matsuno and T. Uematsu, Effect of vitamin D3 on interleukin-6 synthesis induced by prostaglandins in osteoblasts, Prostaglandins, Leukotrienes Essent. Fatty Acids, 1998, 58, 119–123.

    Article  CAS  Google Scholar 

  48. R. Gruber, G. Nothegger, G. M. Ho, M. Willheim and M. Peterlik, Differential stimulation by PGE2 and calcemic hormones of IL-6 in stromal/osteoblastic cells, Biochem. Biophys. Res. Commun., 2000, 270, 1080–1085.

    Article  CAS  PubMed  Google Scholar 

  49. J. M. Tran, C. R. Kleeman and J. Green, Production of interleukin-6 by osteoblastic cells is independent of medium inorganic phosphate, Biochem. Mol. Med., 1995, 55, 90–95.

    Article  CAS  PubMed  Google Scholar 

  50. M. Giner, M. A. Rios, M. A. Montoya, M. A. Vazquez, L. Naji, R. Perez-Cano, RANKL/OPG in primary cultures of osteoblasts from post-menopausal women. Differences between osteoporotic hip fractures and osteoarthritis, J. Steroid Biochem. Mol. Biol., 2009, 113, 46–51.

    Article  CAS  PubMed  Google Scholar 

  51. N. J. Horwood, J. Elliott, T. J. Martin and M. T. Gillespie, Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells, Endocrinology, 1998, 139, 4743–4746.

    Article  CAS  PubMed  Google Scholar 

  52. T. Suda, E. Jimi, I. Nakamura and N. Takahashi, Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function, Methods Enzymol., 1997, 282, 223–235.

    Article  CAS  PubMed  Google Scholar 

  53. T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M. T. Gillespie and T. J. Martin, Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families, Endocr. Rev., 1999, 20, 345–357.

    Article  CAS  PubMed  Google Scholar 

  54. G. P. Thomas, S. U. K. Baker, J. A. Eisman and E. M. Gardiner, Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts, J. Endocrinol., 2001, 170, 451–460.

    Article  CAS  PubMed  Google Scholar 

  55. D. Zhang, Y. Q. Yang, X. T. Li and M. K. Fu, The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligament cells cultured with and without 1alpha,25-dihydroxyvitamin D3, Arch. Oral Biol., 2004, 49, 71–76.

    Article  CAS  PubMed  Google Scholar 

  56. P. A. Baldock, G. P. Thomas, J. M. Hodge, S. U. Baker, U. Dressel, P. D. O’Loughlin, G. C. Nicholson, K. H. Briffa, J. A. Eisman and E. M. Gardiner, Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast, J. Bone Miner. Res., 2006, 21, 1618–1626.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Monjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satué, M., Córdoba, A., Ramis, J.M. et al. UV-irradiated 7-dehydrocholesterol coating on polystyrene surfaces is converted to active vitamin D by osteoblastic MC3T3-E1 cells. Photochem Photobiol Sci 12, 1025–1035 (2013). https://doi.org/10.1039/c3pp50025j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50025j

Navigation