Skip to main content
Log in

Nonlinear absorption properties of 5,10-A2B2porphyrins—correlation of molecular structure with the nonlinear responses

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The nonlinear absorption properties of two series of novel free base and metalated meso 5,10-A2B2 substituted porphyrins, both bearing p-tolyl as an A substituent and TMS-ethynyl or bromine as a B substituent, were investigated with the open Z-scan technique at 532 nm in the ns time regime. Most of the compounds exhibited a transmission drop with increasing input fluence. This behavior is desirable for their applications in optical limiting. More complex responses: a drop in transmission followed by an increase in transmission or an increase in transmission followed by a transmission drop, with increasing input fluence, were detected for certain compounds. All of the recorded responses were successfully fitted with a four-level model with simultaneous two-photon absorption arising from the higher excited states (consecutive one- + one- + two-photon absorption). The TMS-ethynyl group was found to be a more efficient meso substituent in optical limiting than the bromine atom. Indium, lead and zinc complexes with TMS-ethynyl substituents were the strongest positive nonlinear absorbers amongst compounds studied which makes them the most interesting candidates for optical limiting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane and H. C. Kapteyn, The attosecond nonlinear optics of bright coherent X-ray generation, Nat. Photonics, 2010, 4, 822–832.

    Article  CAS  Google Scholar 

  2. K. Itoh, W. Watanabe and Y. Ozeki, Nonlinear ultrafast focal-point optics for microscopic imaging, manipulation, and machining, Proc. IEEE, 2009, 97, 1011–1030.

    Article  Google Scholar 

  3. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, E. M. N. Mhuircheartaigh, Nonlinear optical properties of porphyrins, Adv. Mater., 2007, 19, 2737–2774.

    Article  CAS  Google Scholar 

  4. G. de la Torre, P. Vaquez, F. Agullo-Lopez and T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev., 2004, 104, 3723–3750.

    Article  PubMed  CAS  Google Scholar 

  5. M. Calvete, G. Y. Yang and M. Hanack, Porphyrins and phthalocyanines as materials for optical limiting, Synth. Met., 2004, 141, 231–243.

    Article  CAS  Google Scholar 

  6. D. Dini, G. Y. Yang and M. Hanack, Porphyrins, phthalocyanines and related compounds as materials for optical limiting, Targets Heterocycl. Syst., 2004, 8, 1–32.

    CAS  Google Scholar 

  7. K. J. McEwan, G. Bourhill, J. M. Robertson and H. L. Anderson, The nonlinear optical characterization of meso-substituted porphyrin dyes, J. Nonlinear Opt. Phys. Mater., 2000, 9, 451–468.

    Article  CAS  Google Scholar 

  8. S. T. Fu, X. J. Zhu, G. J. Zhou, W. Y. Wong, C. Ye, W. K. Wong and Z. Y. Li, Synthesis, structures and optical power limiting of some transition metal and lanthanide monoporphyrinate complexes containing electron-rich diphenylamino substituents, Eur. J. Inorg. Chem., 2007, 2004–2013.

    Google Scholar 

  9. K. Dou, X. D. Sun, X. J. Wang, R. Parkhill, Y. Guo and E. T. Knobbe, Optical limiting and nonlinear absorption of excited states-in metalloporphyrin-doped sol gels, IEEE J. Quantum Electron., 1999, 35, 1004–1014

    Article  CAS  Google Scholar 

  10. C. Y. He, Y. Q. Wu, G. Shi, L. Jiang, W. Duan, Y. Song and Q. Chang, Strong reverse saturable absorptive effect of an ultrathin film containing octacarboxylic cobalt phthalocyanine and polyethylenimine, J. Porphyrins Phthalocyanines, 2007, 11, 496–502.

    Article  CAS  Google Scholar 

  11. A. Baev, O. Rubio-Pons, F. Gel’mukhanov and H. Agren, Optical limiting properties of zinc- and platinum-based organometallic compounds, J. Phys. Chem. A, 2004, 108, 7406–7416.

    Article  CAS  Google Scholar 

  12. W. Blau, H. Byrne, W. M. Dennis and J. M. Kelly, Reverse saturable absorption in tetraphenylporphyrins, Opt. Commun., 1985, 56, 25–29.

    Article  CAS  Google Scholar 

  13. D. Dini, M. Barthel and M. Hanack, Phthalocyanines as active materials for optical limiting, Eur. J. Org. Chem., 2001, 3759–3769.

    Google Scholar 

  14. Y. L. Liu, Z. B. Liu, J. G. Tian, Y. Zhu and J. Y. Zheng, Effects of metallization and bromination on nonlinear optical properties of diphenylporphyrins, Opt. Commun., 2008, 281, 776–781

    Article  CAS  Google Scholar 

  15. Y. Zhu, Y. Z. Zhu, H. B. Song, J. Y. Zheng, Z. B. Liu and J. G. Tian, Synthesis and crystal structure of 21,23-dithiaporphyrins and their nonlinear optical activities, Tetrahedron Lett., 2007, 48, 5687–5691.

    Article  CAS  Google Scholar 

  16. M. Zawadzka, J. Wang, W. J. Blau and M. O. Senge, Correlation studies on structurally diverse porphyrin monomers, dimers and trimers and their nonlinear optical responses, Chem. Phys. Lett., 2009, 477, 330–335.

    Article  CAS  Google Scholar 

  17. A. Krivokapic, H. L. Anderson, G. Bourhill, R. Ives, S. Clark and K. J. McEwan, Meso-tetra-alkynyl porphyrins for optical limiting–A survey of group III and IV metal complexes, Adv. Mater., 2001, 13, 652–656.

    Article  CAS  Google Scholar 

  18. P. P. Kiran, N. Srinivas, D. R. Reddy, B. G. Maiya, A. Dharmadhikari, A. S. Sandhu, G. R. Kumar and D. N. Rao, Heavy atom effect on nonlinear absorption and optical limiting characteristics of 5,10,15,20-(tetratolyl) porphyrinato phosphorus(v) dichloride, Opt. Commun., 2002, 202, 347–352.

    Article  Google Scholar 

  19. P. J. Goncalves, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio and I. E. Borissevitch, Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin, Chem. Phys. Lett., 2005, 407, 236–241.

    Article  CAS  Google Scholar 

  20. F. M. Qureshi, S. J. Martin, X. Long, D. D. C. Bradley, F. Z. Henari, W. J. Blau, E. C. Smith, C. H. Wang, A. K. Kar and H. L. Anderson, Optical limiting properties of a zinc porphyrin polymer and its dimer and monomer model compounds, Chem. Phys., 1998, 231, 87–94.

    Article  CAS  Google Scholar 

  21. Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang and Y. S. Chen, A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property, Adv. Mater., 2009, 21, 1275–1279

    Article  CAS  Google Scholar 

  22. Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen and J. G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties, J. Phys. Chem. B, 2009, 113, 9681–9686.

    Article  CAS  PubMed  Google Scholar 

  23. M. O. Senge, C. Ryppa, M. Fazekas, M. Zawadzka and K. Dahms, 5,10-A2B2-Type meso-substituted porphyrins-a unique class of porphyrins with a realigned dipole moment, Chem.–Eur. J., 2011, 17, 13562–13573.

    Article  CAS  PubMed  Google Scholar 

  24. E. G. A. Notaras, M. Fazekas, J. J. Doyle, W. J. Blau and M. O. Senge, A(2)B(2)-type push-pull porphyrins as reverse saturable and saturable absorbers, Chem. Commun., 2007, 2166–2168.

    Google Scholar 

  25. M. Zawadzka, J. Wang, W. J. Blau and M. O. Senge, Modeling of nonlinear absorption of 5,10-A2B2 porphyrins in the nanosecond regime, J. Phys. Chem. A, 2013, 117, 15–26.

    Article  CAS  PubMed  Google Scholar 

  26. Porphyrins and metalloporphyrins, ed. K. M. Smith, Elsevier, Amsterdam, Oxford, 1975.

    Google Scholar 

  27. K. Sonogashira, Y. Tohda and N. Hagihara, Convenient synthesis of acetylenes–catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, and bromopyridines, Tetrahedron Lett., 1975, 4467–4470.

    Google Scholar 

  28. E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom and G. L. Roberts, Synthesis, aggregation behavior and nonlinear absorption properties of lead phthalocyanines substituted with siloxane chains, J. Mater. Chem., 2003, 13, 1603–1613.

    Article  CAS  Google Scholar 

  29. E. Stulz, C. C. Mak, J. K. M. Sanders, Matrix assisted laser desorption/ionisation (MALDI)-TOF mass spectrometry of supramolecular metalloporphyrin assemblies: a survey, J. Chem. Soc., Dalton Trans., 2001, 604–613

    Google Scholar 

  30. M. J. Crossley, P. Thordarson, R. A. S. Wu, Efficient formation of lipophilic dihydroxotin(iv) porphyrins and bis-porphyrins, J. Chem. Soc., Perk. Trans. 1, 2001, 2294–2302.

    Google Scholar 

  31. R. J. Abraham, F. Eivazi, H. Pearson and K. M. Smith, Pi-pi aggregation in metalloporphyrins–causative factors, J. Chem. Soc., Chem. Commun., 1976, 699–701

    Google Scholar 

  32. R. J. Abraham, F. Eivazi, H. Pearson and K. M. Smith, Mechanisms of aggregation in metalloporphyrins–demonstration of a mechanistic dichotomy, J. Chem. Soc., Chem. Commun., 1976, 698–699

    Google Scholar 

  33. M. O. Senge, C. W. Eigenbrot, T. D. Brennan, J. Shusta, W. R. Scheidt and K. M. Smith, Aggregation properties of nitroporphyrins: comparisons between solid-state and solution structures, Inorg. Chem., 1993, 32, 3134–3142.

    Article  CAS  Google Scholar 

  34. R. F. Pasterna, G. C. Centuro, P. Boyd, L. D. Hinds, P. R. Huber, L. Francesc, P. Fasella, G. Engasser and E. Gibbs, Aggregation of meso-substituted water-soluble porphyrins, J. Am. Chem. Soc., 1972, 94, 4511–4517.

    Article  Google Scholar 

  35. L. M. Mink, M. L. Neitzel, L. M. Bellomy, R. E. Falvo, R. K. Boggess, B. T. Trainum and P. Yeaman, Platinum(ii) and platinum(iv) porphyrin complexes: synthesis, characterization, and electrochemistry, Polyhedron, 1997, 16, 2809–2817.

    Article  CAS  Google Scholar 

  36. S. M. O’Flaherty, S. V. Hold, M. J. Cook, T. Torres, Y. Chen, M. Hanack and W. J. Blau, Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics, Adv. Mater., 2003, 15, 19–32.

    Article  Google Scholar 

  37. R. Bonnett, A. Harriman and A. N. Kozyrev, Photophysics of halogenated porphyrins, J. Chem. Soc., Faraday Trans., 1992, 88, 763–769.

    Article  CAS  Google Scholar 

  38. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, C. P. G. Vallabhan, Nonlinear absorption in certain metal phthalocyanines at resonant and near resonant wavelengths, Opt. Commun., 2003, 217, 269–274.

    Article  CAS  Google Scholar 

  39. J. H. Si, M. Yang, Y. X. Wang, L. Zhang, C. F. Li, D. Y. Wang, S. M. Dong and W. F. Sun, Nonlinear excited-state absorption in cadmium texaphyrin solution, Appl. Phys. Lett., 1994, 64, 3083–3085

    Article  CAS  Google Scholar 

  40. S. N. R. Swatton, K. R. Welford, S. J. Till and J. R. Sambles, Nonlinear absorption of a carbocyanine dye 1,1′,3,3,3′,3′-hexamethylindotricarbocyanine iodine using a Z-scan technique, Appl. Phys. Lett., 1995, 66, 1868–1870

    Article  CAS  Google Scholar 

  41. P. P. Kiran, D. R. Reddy, B. G. Maiya, A. K. Dharmadhikari, G. R. Kumar and N. R. Desai, Enhanced optical limiting and nonlinear absorption properties of azoarene-appended phosphorus(v) tetratolylporphyrins, Appl. Opt., 2002, 41, 7631–7636.

    Article  CAS  PubMed  Google Scholar 

  42. N. Srinivas, S. V. Rao, D. Rao, B. K. Kimball, M. Nakashima, B. S. Decristofano and D. N. Rao, Wavelength dependent studies of nonlinear absorption in zinc meso-tetra(p-methoxyphenyl)tetrabenzoporphyrin (Znmp TBP) using Z-scan technique, J. Porphyrins Phthalocyanines, 2001, 5, 549–554

    Article  CAS  Google Scholar 

  43. D. Dini, S. Vagin, M. Hanack, V. Amendola and M. Meneghetti, Nonlinear optical effects related to saturable and reverse saturable absorption by subphthalocyanines at 532 nm, Chem. Commun., 2005, 3796–3798.

    Google Scholar 

  44. W. J. Su, T. M. Cooper and M. C. Brant, Investigation of reverse-saturable absorption in brominated porphyrins, Chem. Mater., 1998, 10, 1212–1213.

    Article  CAS  Google Scholar 

  45. M. O. Senge, M. Fazekas, M. Pintea, M. Zawadzka and W. J. Blau, 5,15-A(2)B(2)- and 5,15-A(2)BC-Type porphyrins with donor and acceptor groups for use in nonlinear optics and photodynamic therapy, Eur. J. Org. Chem., 2011, 5797–5816.

    Google Scholar 

  46. M. O. Senge, Y. M. Shaker, M. Pintea, C. Ryppa, S. S. Hatscher, A. Ryan and Y. Sergeeva, Synthesis of meso-substituted ABCD-type porphyrins by functionalization reactions, Eur. J. Org. Chem., 2010, 237–258.

    Google Scholar 

  47. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Vanstryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron., 1990, 26, 760–769.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias O. Senge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zawadzka, M., Wang, J., Blau, W.J. et al. Nonlinear absorption properties of 5,10-A2B2porphyrins—correlation of molecular structure with the nonlinear responses. Photochem Photobiol Sci 12, 996–1007 (2013). https://doi.org/10.1039/c3pp25410k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25410k

Navigation