Skip to main content
Log in

Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The dose-dependent variation of oxidative cellular damage imposed by UVB exposure in a representative estuarine bacterial strain, Pseudomonas sp. NT5I1.2B, was studied at different growth phases (mid-exponential, late-exponential, and stationary), growth temperatures (15 °C and 25 °C) and growth media (nutrient-rich Tryptic Soy Broth [TSB] and nutrient-poor M9). Survival and markers of oxidative damage (lipid peroxidation, proteincarbonylation, DNA strand breakage, and DNA–protein cross-links) were monitored during exposure to increasing UVB doses (0–60 kJ m-2). Oxidative damage did not follow a clear linear dose-dependent pattern, particularly at high UVB doses (>10 kJ m-2), suggesting a dynamic interaction between damage induction and repair during irradiation and/or saturation of oxidative damage. Survival of stationary phase cells generally exceeded that of exponential phase cells by up to 33.5 times; the latter displayed enhanced levels of DNA—protein cross-links (up to 15.6-fold) and proteincarbonylation (up to 6.0-fold). Survival of mid-exponential phase cells was generally higher at 15 °C than at 25 °C (up to 6.6-fold), which was accompanied by lower levels of DNA strand breaks (up to 4000-fold), suggesting a temperature effect on reactive oxygen species (ROS) generation and/or ROS interaction with cellular targets. Survival under medium–high UVB doses (>10 kJ m-2) was generally higher (up to 5.4-fold) in cells grown in TSB than in M9. These results highlight the influence of growth conditions preceding irradiation on the extent of oxidative damage induced by UVB exposure in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Garcia-Pichel, A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens, Limnol. Oceanogr., 1994, 39, 1704–1717.

    Article  Google Scholar 

  2. D. L. Mitchell and D. Karentz, in Environmental UV Photobiology, ed. A. R. Young, L. O. Bjorn, J. Moan and W. Nultsch, Plenum Press, New York, 1993, pp. 345–377.

  3. F. Joux, W. H. Jeffrey, P. Lebaron and D. L. Mitchell, Marine bacterial isolates display diverse responses to UV-B radiation, Appl. Environ. Microbiol., 1999, 65, 3820–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Matallana-Surget, J. A. Meador, F. Joux and T. Douki, Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts, Photochem. Photobiol. Sci., 2008, 7, 794–801.

    Article  CAS  PubMed  Google Scholar 

  5. P. M. Visser, J. J. Poos, B. B. Scheper, P. Boelen, F. C. Van Duyl, Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters, Mar. Ecol.: Prog. Ser., 2002, 228, 25–33.

    Article  CAS  Google Scholar 

  6. A. W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, J. Photochem. Photobiol., B, 2001, 63, 103–113.

    Article  CAS  Google Scholar 

  7. F. Bosshard, K. Riedel, T. Schneider, C. Geiser, M. Bucheli and T. Egli, Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence, Environ. Microbiol., 2010, 12, 2931–2945.

    Article  CAS  PubMed  Google Scholar 

  8. W. F. Beyer, Jr. and I. Fridovich, In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli, J. Biol. Chem., 1991, 266, 303–308.

    Article  CAS  PubMed  Google Scholar 

  9. J. Tamarit, E. Cabiscol and J. Ros, Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress, J. Biol. Chem., 1998, 273, 3027–3032.

    Article  CAS  PubMed  Google Scholar 

  10. K. Murakami, R. Tsubouchi, M. Fukayama, T. Ogawa and M. Yoshino, Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase, Arch. Microbiol., 2006, 186, 385–392.

    Article  CAS  PubMed  Google Scholar 

  11. D. L. Mitchell, in A handbook of organic photochemistry and photobiology, ed. W. Horspool and P. S. Song, CRC Press, London, 1995, pp. 1310–1315.

  12. A. L. Santos, V. Oliveira, I. Baptista, I. Henriques, N. C. M. Gomes, A. Almeida, A. Correia, Â. Cunha, Wavelength dependence of biological damage induced by UV radiation on bacteria, Arch. Microbiol., 2013, 195, 63–74.

    Article  CAS  PubMed  Google Scholar 

  13. X. Qiu, G. W. Sundin, L. Wu, J. Zhou and J. M. Tiedje, Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation, J. Bacteriol., 2005, 187, 3556–3564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Matallana-Surget, F. Joux, R. Wattiez and P. Lebaron, Proteome analysis of the UVB-resistant marine bacterium Photobacterium angustum S14, PLoS One, 2012, 7, e42299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 3rd edn, 1999.

    Google Scholar 

  16. S. Matallana-Surget, T. Douki, J. A. Meador, R. Cavicchioli and F. Joux, Influence of growth temperature and starvation state on survival and DNA damage induction in the marine bacterium Sphingopyxis alaskensis exposed to UV radiation, J. Photochem. Photobiol., B, 2010, 100, 51–56.

    Article  CAS  Google Scholar 

  17. A. K. Bullock and W. H. Jeffrey, Temperature and solar radiation interactions on 3H-leucine incorporation by bacterioplankton in a subtropical estuary, Photochem. Photobiol., 2010, 86, 593–599.

    Article  CAS  PubMed  Google Scholar 

  18. C. Pausz and G. J. Herndl, Role of nitrogen versus phosphorus availability on the effect of UV radiation on bacterioplankton and their recovery from previous UV stress, Aquat. Microb. Ecol., 2002, 29, 89–95.

    Article  Google Scholar 

  19. E. Gayán, S. Monfort, I. Álvarez, S. Condón, UV-C inactivation of Escherichia coli at different temperatures, Innovative Food Sci. Emerging Technol., 2011, 12, 531–541.

    Article  CAS  Google Scholar 

  20. A. G. J. Buma, M. K. De Boer and P. Boelen, Depth distributions of DNA damage in Antarctic marine phyto and bacterioplankton exposed to summertime UV radiation, J. Phycol., 2001, 37, 200–208.

    Article  CAS  Google Scholar 

  21. D. Karentz, J. E. Cleaver and D. L. Mitchell, Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation, J. Phycol., 1991, 27, 326–341.

    Article  CAS  Google Scholar 

  22. M. Berney, H. U. Weilenmann, J. Ihssen, C. Bassin and T. Egli, Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection, Appl. Environ. Microbiol., 2006, 72, 2586–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Bucheli-Witschel, C. Bassin and T. Egli, UV-C inactivation in Escherichia coli is affected by growth conditions preceding irradiation, in particular by the specific growth rate, J. Appl. Microbiol., 2010, 109, 1733–1744.

    CAS  PubMed  Google Scholar 

  24. K. I. Dantur and R. A. Pizarro, Effect of growth phase on the Escherichia coli response to ultraviolet-A radiation: influence of conditioned media, hydrogen peroxide and acetate, J. Photochem. Photobiol., B, 2004, 75, 33–39.

    Article  CAS  Google Scholar 

  25. A. L. Santos, S. Lopes, I. Baptista, I. Henriques, N. C. M. Gomes, A. Almeida, A. Correia, Â. Cunha, Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates, Lett. Appl. Microbiol., 2011, 52, 360–366.

    Article  CAS  PubMed  Google Scholar 

  26. M. P. Franklin, I. R. McDonald, D. G. Bourne, N. J. P. Owens, R. C. Upstill-Goddard and J. C. Murrell, Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass, Environ. Microbiol., 2005, 7, 723–736.

    Article  CAS  PubMed  Google Scholar 

  27. A. L. Santos, V. Oliveira, I. Baptista, I. Henriques, N. C. M. Gomes, A. Almeida, A. Correia and A. Cunha, Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton, Appl. Environ. Microbiol., 2012, 78, 2066–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Alonso-Sáez, J. M. Gasol, T. Lefort, J. Hofer and R. Sommaruga, Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in Northwestern Mediterranean coastal waters, Appl. Environ. Microbiol., 2006, 72, 5806–5813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. J. S. N. Azevedo, I. Ramos, S. Araújo, C. S. Oliveira, A. Correia and I. S. Henriques, Spatial and temporal analysis of estuarine bacterioneuston and bacterioplankton using culture-dependent and culture-independent methodologies, Anton. Leeuw. Int. J. G., 2012, 1–17.

    Google Scholar 

  30. C. S. Simonson, T. A. Kokjohn and R. V. Miller, Inducible UV repair potential of Pseudomonas aeruginosa PAO, J. Gen. Microbiol., 1990, 136, 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  31. T. A. Kokjohn and R. V. Miller, IncN plasmids mediate UV resistance and error-prone repair in Pseudomonas aeruginosa PAO, Microbiology, 1994, 140, 43–48.

    Article  CAS  PubMed  Google Scholar 

  32. S. P. Kidambi, M. G. Booth, T. A. Kokjohn and R. V. Miller, recA-dependence of the response of Pseudomonas aeruginosa to UVA and UVB irradiation, Microbiology, 1996, 142, 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  33. T. A. Kokjohn and R. V. Miller, Molecular cloning and characterization of the recA gene of Pseudomonas aeruginosa PAO, J. Bacteriol., 1985, 163, 568–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Santos, A. L. Santos, F. J. R. C. Coelho, N. C. M. Gomes, J. M. Dias, Â. Cunha and A. Almeida, Relation between bacterial activity in the surface microlayer and estuarine hydrodynamics, FEMS Microbiol. Ecol., 2011, 77, 636–646.

    Article  CAS  PubMed  Google Scholar 

  35. J. M. Arrieta, M. G. Weinbauer and G. J. Herndl, Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria, Appl. Environ. Microbiol., 2000, 66, 1468–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Agogué, F. Joux, I. Obernosterer and P. Lebaron, Resistance of marine bacterioneuston to solar radiation, Appl. Environ. Microbiol., 2005, 71, 5282–5289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. V. Fernández Zenoff, F. Siñeriz, M. E. Farías, Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments, Appl. Environ. Microbiol., 2006, 72, 7857–7863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. A. L. Santos, I. Baptista, S. Lopes, I. Henriques, N. C. M. Gomes, A. Almeida, A. Correia and A. Cunha, The UV responses of bacterioneuston and bacterioplankton isolates depend on the physiological condition and involve a metabolic shift, FEMS Microbiol. Ecol., 2012, 80, 646–658.

    Article  CAS  PubMed  Google Scholar 

  39. X. Qiu, G. W. Sundin, B. Chai and J. M. Tiedje, Survival of Shewanella oneidensis MR-1 after UV radiation exposure, Appl. Environ. Microbiol., 2004, 70, 6435–6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P. Hörtnagl, M. T. Pérez and R. Sommaruga, Contrasting effects of ultraviolet radiation on the growth efficiency of freshwater bacteria, Aquat. Ecol., 2011, 45, 125–136.

    Article  PubMed  CAS  Google Scholar 

  41. J. E. Hobbie, R. J. Daley and S. Jasper, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 1977, 33, 1225–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. Jürgens and E. Jeppesen, The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake, J. Plankton Res., 2000, 22, 1047–1070.

    Article  Google Scholar 

  43. Y. Y. He, D. P. Häder, UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-l-cysteine, J. Photochem. Photobiol., B, 2002, 66, 115–124.

    Article  CAS  Google Scholar 

  44. C. Baumstark-Khan and G. Horneck, Results from the “Technical Workshop on Genotoxicity Biosensing” on the micro-scale fluorometric assay of deoxyribonucleic acid unwinding, Anal. Chim. Acta, 2007, 593, 75–81.

    Article  CAS  PubMed  Google Scholar 

  45. K. L. Nguyen, M. Steryo, K. Kurbanyan, K. M. Nowitzki, S. M. Butterfield, S. R. Ward, E. D. A. Stemp, DNA–protein cross-linking from oxidation of guanine via the flash–quench technique, J. Am. Chem. Soc., 2000, 122, 3585–3594.

    Article  CAS  Google Scholar 

  46. J. M. Pérez, I. L. Calderón, F. A. Arenas, D. E. Fuentes, G. A. Pradenas, E. L. Fuentes, J. M. Sandoval, M. E. Castro, A. O. Elías, C. C. Vásquez, Bacterial toxicity of potassium tellurite: unveiling an ancient enigma, PLoS One, 2007, 2.

    Google Scholar 

  47. H. Semchyshyn, T. Bagnyukova, K. Storey and V. Lushchak, Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli, Cell Biol. Int., 2005, 29, 898–902.

    Article  CAS  PubMed  Google Scholar 

  48. S. Matallana-Surget, F. Joux, M. J. Raftery and R. Cavicchioli, The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics, Environ. Microbiol., 2009, 11, 2660–2675.

    Article  CAS  PubMed  Google Scholar 

  49. M. Tark, A. Tover, K. Tarassova, R. Tegova, G. Kivi, R. Hõrak and M. Kivisaar, A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress, J. Bacteriol., 2005, 187, 5203–5213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. L. B. Poole, Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases, Arch. Biochem. Biophys., 2005, 433, 240–254.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Mishra, N. Chaurasia and L. C. Rai, AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses, Biochem. Biophys. Res. Commun., 2009, 381, 606–611.

    Article  CAS  PubMed  Google Scholar 

  52. Å. Fredriksson, M. Ballesteros, S. Dukan, T. Nyström, Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon, J. Bacteriol., 2005, 187, 4207–4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Y. Byeong, A. L. Young, S. K. Kim, V. Kuzmin, A. Kolbanovskiy, P. C. Dedon, N. E. Geacintov and V. Shafirovich, Photosensitized oxidative DNA damage: from hole injection to chemical product formation and strand cleavage, J. Am. Chem. Soc., 2007, 129, 9321–9332.

    Article  CAS  Google Scholar 

  54. S. Nair and S. E. Finkel, Dps protects cells against multiple stresses during stationary phase, J. Bacteriol., 2004, 186, 4192–4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. E. D. Rees, The significance of bacteria in stationary phase to food microbiology, Int. J. Food Microbiol., 1995, 28, 263–275.

    Article  CAS  PubMed  Google Scholar 

  56. C. E. R. Dodd, R. L. Sharman, S. F. Bloomfield, I. R. Booth, G. S. A. B. Stewart, Inimical processes: bacterial self-destruction and sub-lethal injury, Trends Food Sci. Technol., 1997, 8, 238–241.

    Article  CAS  Google Scholar 

  57. R. Hengge-Aronis, Interplay of global regulators and cell physiology in the general stress response of Escherichia coli, Curr. Opin. Microbiol., 1999, 2, 148–152.

    Article  CAS  PubMed  Google Scholar 

  58. O. J. Oppezzo, C. S. Costa and R. A. Pizarro, Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation, J. Photochem. Photobiol., B, 2011, 102, 20–25.

    Article  CAS  Google Scholar 

  59. A. Eisenstark, M. J. Calcutt, M. Becker-Hapak and A. Ivanova, Role of Escherichia coli rpoS and associated genes in defense against oxidative damage, Free Radical Biol. Med., 1996, 21, 975–993.

    Article  CAS  Google Scholar 

  60. T. Nyström, Stationary-phase physiology, Annu. Rev. Microbiol., 2004, 58, 161–181.

    Article  PubMed  CAS  Google Scholar 

  61. S. Li, M. Paulsson, L. O. Björn, Temperature-dependent formation and photorepair of DNA damage induced by UV-B radiation in suspension-cultured tobacco cells, J. Photochem. Photobiol., B, 2002, 66, 67–72.

    Article  CAS  Google Scholar 

  62. J. Borgeraas and D. O. Hessen, UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures, J. Plankton Res., 2000, 22, 1167–1183.

    Article  CAS  Google Scholar 

  63. C. Ruiz-González, M. Galí, T. Lefort, C. Cardelús, R. Simó and J. M. Gasol, Annual variability in light modulation of bacterial heterotrophic activity in surface northwestern Mediterranean waters, Limnol. Oceanogr., 2012, 57, 1376–1388.

    Article  Google Scholar 

  64. C. Ruiz-González, T. Lefort, M. Galí, M. Montserrat Sala, R. Sommaruga, R. Simó and J. M. Gasol, Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters, FEMS Microbiol. Ecol., 2012, 79, 661–674.

    Article  PubMed  CAS  Google Scholar 

  65. F. Joux, W. H. Jeffrey, M. Abboudi, J. Neveux, M. Pujo-Pay, L. Oriol and J. J. Naudin, Ultraviolet radiation in the Rhône river lenses of low salinity and in marine waters of the northwestern Mediterranean sea: attenuation and effects on bacterial activities and net community production, Photochem. Photobiol., 2009, 85, 783–793.

    Article  CAS  PubMed  Google Scholar 

  66. P. Kankaanpää, B. Yang, H. Kallio, E. Isolauri and S. Salminen, Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli, Appl. Environ. Microbiol., 2004, 70, 129–136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. J. A. Imlay, Pathways of oxidative damage, Annu. Rev. Microbiol., 2003, 57, 395–418.

    Article  CAS  PubMed  Google Scholar 

  68. J. M. Pérez, F. A. Arenas, G. A. Pradenas, J. M. Sandoval, C. C. Vásquez, Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes, J. Biol. Chem., 2008, 283, 7346–7353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A.L., Gomes, N.C.M., Henriques, I. et al. Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate. Photochem Photobiol Sci 12, 974–986 (2013). https://doi.org/10.1039/c3pp25353h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25353h

Navigation