Skip to main content
Log in

Survival and expression of DNA repair genes in marine bacteria Pseudomonas pseudoalcaligenes NP103 and P. aeruginosa N6P6 in response to environmental stressors

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A comparative response of marine bacteria Pseudomonas pseudoalcaligenes NP103 and P. aeruginosa N6P6 under pH stress and UV radiation (UVR) revealed that both their survival pattern and repair mechanism are species specific. In case of P. pseudoalcaligenes NP103, the survival was maximum at pH 8, which decreased with decline in pH of the medium. Whereas, in P. aeruginosa N6P6, maximum survival was observed at pH 7. On exposure to UVR at different doses (25–200 mJ/cm2) and increasing concentrations of Na+ (1–6%), considerable differences in the recovery (2% for P. pseudoalcaligenes NP103 and 3% for P. aeruginosa N6P6) from UVR induced damage was observed. The qRT-PCR analysis of DNA repair genes (recA and uvrA) of marine bacteria subjected to different pH conditions showed significant (P < 0.05) up-regulation of both genes at pH 6, indicating higher degree of DNA damage at low pH. Furthermore, exposure of UVR irradiated cell suspensions to visible light exhibited greater photo-reactivating capacity in P. pseudoalcaligenes NP103 as compared to P. aeruginosa N6P6. The present findings indicate that pH and UVR exposure have crucial role in dictating the light dependent and independent DNA repair pathway in marine bacteria. Further, we speculate that both these repair response to the environmental stressors varies with bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrieta, J.M., Weinbauer, M.G., and Herndl, G.J., Interspecific variability in sensitivity to UVradiation and subsequent recovery in selected isolates of marine bacteria, Appl. Environ. Microbiol., 2000, vol. 66, no.4, pp. 1468–1473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth, M.G., Jeffrey, W.H., and Miller R.V., RecA expression in response to solar UVR in the marine bacterium, Vibrio natriegens, Microb. Ecol., 2001, vol. 42, no. 4, pp. 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, J. and Das, S., Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11, Environ. Sci. Pollut. R., 2014, vol. 21, pp. 14188–14201.

    Article  CAS  Google Scholar 

  • Collins, A.R., The comet assay for DNA damage and repair, Mol. Biotechnol., 2004, vol. 26, no. 3, pp. 249–261.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, D.J. and Hanawalt, P.C., Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6-4 photoproducts, in UV-irradiated Escherichia coli, J. Bacteriol., 1998, vol. 180, no. 13, pp. 3345–3352.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dash, H.R., Mangwani, N., and Das, S., Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05, Environ. Sci Pollut. R., 2014, vol. 21, no. 4, pp. 2642–2653.

    Article  CAS  Google Scholar 

  • Dash, H.R., Mangwani, N., Chakraborty, J., Kumari, S., and Das, S., Marine bacteria: potential candidates for enhanced bioremediation, Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 2, pp. 561–571.

    Article  CAS  PubMed  Google Scholar 

  • Eisen, J.A., and Hanawalt, P.C., A phylogenomic study of DNA repair genes, proteins, and processes, Mutat. Res., 1999, vol. 435, no. 3, pp. 171–213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imamura, M., Harada, K., Sawada, S., Akagi, K., and Ohnishi, T., Damage to DNA purified from the radioresistant prokaryote, Deinococcus radiodurans, by acid heating, Int. J. Mol. Med., 1999, vol. 3, pp. 391–395.

    CAS  PubMed  Google Scholar 

  • Jaciuk, M., Nowak, E., Skowronek, K., Tanska, A., and Nowotny, M., Structure of UvrA nucleotide excision repair protein in complex with modified DNA, Nat. Struct. Mol. Biol., 2011, vol. 18, pp. 191–197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janion, C., Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli, Int. J. Biol. Sci., 2008, vol. 4, no. 6, pp. 338–344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joux, F., Jeffrey, W.H., Lebaron, P., and Mitchell, D.L., Marine bacterial isolates display diverse responses to UV-B radiation, Appl. Environ. Microbiol., 1999, vol. 65, no. 9, pp. 3820–3827.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krause, S., Liebetrau, V., Gorb, S., Sánchez-Román, M., McKenzie, J.A., and Treude, T., Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma, Geology, 2012, vol. 40, no. 7, pp. 587–590.

    Article  CAS  Google Scholar 

  • Lee, R.F. and Steinert, S., Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals, Mutat. Res., 2003, vol. 544, no. 1, pp. 43–64.

    Article  CAS  PubMed  Google Scholar 

  • Lenhart, J.S., Schroeder, J.W., Walsh, B.W., and Simmons, L.A., DNA repair and genome maintenance in Bacillus subtilis, Microbiol. Mol. Biol. Rev., 2012, vol. 76, no. 3, pp. 530–564.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mangoli, S., Rath, D., Goswami, M., and Jawali, N., Increased ultraviolet radiation sensitivity of Escherichia coli grown at low temperature, Can. J. Microbiol., 2014, vol. 60, no. 5, pp. 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Mangwani, N., Kumari, S., Shukla, SK., Rao, T.S., and Das, S., Phenotyping switching in biofilm-forming bacteria in Paenibacillus lautus, Curr. Microbiol., 2014., vol. 68, no. 5, pp. 648–656.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner, U.A., Vasil, M.L., Alsabbagh, E., Parvatiyar, K., and Hassett, D.J., Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, andahpC-ahpF, J. Bacteriol., 2000, vol. 182, pp. 4533–4544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padan, E., Bibi, E., Ito, M., and Krulwich, T.A., Alkaline pH homeostasis in bacteria: new insights, Biochem. Biophys. Acta, 2005, vol. 30, pp. 67–88.

    Article  Google Scholar 

  • Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 2001, vol. 29, no. 9, pp. e45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanenko, L.A., Uchino, M., Falsen, E., Frolova, G.M., Zhukova, N.V., and Mikhailov, V.V., Pseudomonas pachastrellae sp. nov., isolated from a marine sponge, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 919–924.

    Article  CAS  PubMed  Google Scholar 

  • Rupert, C.S., Photoenzymatic repair of ultraviolet damage in DNA, J. Gen. Physiol., 1962, vol. 45, no. 4, pp. 703–724.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selby, C.P. and Sancar, A., A crytochrome/photolyase class of enzymes with singlestranded DNA-specific photolyase activity, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 47, pp. 17696–17700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha, R.P. and Häder, D.P., UV-induced DNA damage and repair: a review, Photo. Chem. Photobiol. Sci., 2002, vol. 1, no. 4, pp. 225–236.

    Article  CAS  Google Scholar 

  • Solanky, D. and Haydel, S.E., Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli, J. Microbiol. Methods., 2012, vol. 91, no. 2, pp. 257–261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanley, S.O. and Morita, R.Y., Salinity effect on the maximal growth temperature of some bacteria isolated from marine environments, J. Bacteriol., 1968, vol. 95, no. 1, pp. 169–173.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson, C.L. and Sancar, A., Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock, Oncogene, 2002, vol. 21, no. 58, pp. 9043–9056.

    Article  CAS  PubMed  Google Scholar 

  • Zenoff, V.F., Sineriz, F., and Farias, M.E., Diverse response to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic organisms, Appl. Environ. Microbiol., 2006, vol. 72, no. 12, pp. 7857–7863.

    Article  CAS  Google Scholar 

  • Žgur-Bertok, D., DNA Damage Repair and Bacterial Pathogens, PLoS Pathog., 2013, vol. 9 no. 11, pp. e1003711.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Ganeriwal, S., Mangwani, N. et al. Survival and expression of DNA repair genes in marine bacteria Pseudomonas pseudoalcaligenes NP103 and P. aeruginosa N6P6 in response to environmental stressors. Microbiology 84, 644–653 (2015). https://doi.org/10.1134/S0026261715050057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715050057

Keywords

Navigation