Skip to main content
Log in

Studies of the solvatochromic emission properties of N-aroylurea derivatives II: influence of hydrogen-bonding interactions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The solvatochromic emission properties of five naphthoylurea derivatives with different substitution patterns at the naphthoylurea functionality were investigated, with a particular focus on the influence of inter- and intramolecular H-bonding interactions. The bathochromic shifts of the emission maxima correlate well with the acceptor number or Catalán’s acidity of the solvent (Δλ = 47–86 nm), indicating an excited species with a pronounced negative charge that is stabilized by H-bond donating (HBD) solvents. In media with restricted free volume the formation of the charged species is not favored, because the required conformational change to establish an intramolecular charge transfer (ICT) between the fluorophore and the acylurea substituent is hindered, and the emission mainly originates from the locally excited state. This relationship between the alignment of the naphthoyl carbonyl functionality relative to the naphthyl ring and the spectroscopic shift was confirmed by the comparison of the ground state conformation and the emission spectra of the naphthoylurea derivatives in the solid state. Time-resolved experiments revealed different excited entities, whose lifetimes are significantly influenced by the HBD properties and the temperature of the environment. With few exceptions the naphthoylurea derivatives exhibit only two emissive species in the nanosecond range. All experimental data point to conformational relaxation and solvent reorganization leading to the cis and trans isomers of one preferential conformer with respect to the acylurea unit. The structure of the preferred conformation is mainly determined by the possible inter- or intramolecular H-bonds and is therefore also strongly influenced by the HBD and H-bond accepting (HBA) properties of the polar solvents. As the NH groups of the acylurea functionality contribute mainly to the entire inter- and intramolecular H-bond arrangement the variation of the substitution pattern of the urea unit, specifically the presence and position of the NH groups, leads to derivatives with significantly different steady-state and time-resolved emission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006.

    Book  Google Scholar 

  2. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, Germany, 2002.

    Google Scholar 

  3. P. Suppan and N. Ghoneim, Solvatochromism, RSC, London, 1997.

    Google Scholar 

  4. M. Józefowicz, The influence of hydrogen bonds and preferential solvation on spectroscopic properties of methyl p-dimethylaminobenzoate and its ortho derivative in binary solvent mixture, Chem. Phys., 2011, 383, 19.

    Article  CAS  Google Scholar 

  5. Z. R. Grabowski and K. Rotkiewicz, Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures, Chem. Rev., 2003, 103, 3899.

    Article  PubMed  Google Scholar 

  6. J. Catalán, C. Díaz, A generalized solvent acidity scale: the solvatochromism of o-tert-butylstilbazolium betaine dye and its homomorph o,o′-di-tert-butylstilbazolium betaine dye, Liebigs Ann. Chem., 1997, 1941.

    Google Scholar 

  7. M. Orozco and F. J. Luque, Theoretical methods for the description of the solvent effect in biomolecular systems, Chem. Rev., 2000 100, 4187.

    Article  CAS  PubMed  Google Scholar 

  8. C. J. Cramer and D. G. Truhlar, Implicit solvation models: equilibria, structure, spectra, and dynamics, Chem. Rev., 1999 99, 2161.

    Article  CAS  PubMed  Google Scholar 

  9. J. Tomasi and M. Persico, Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent, Chem. Rev., 1994 94, 2027.

    Article  CAS  Google Scholar 

  10. M. S. Zakerhamidi, A. Ghanadzadheh and M. Moghadam, Effect of anisotropic and isotropic solvent on the dipole moment of coumarin dyes, Spectrochim. Acta, Part A, 2011, 78, 961.

    Article  CAS  Google Scholar 

  11. N. A. Murugan, J. Kongsted, Z. Rinkevicius, H. Ågren, Demystifying the solvatochromic reversal in Brooker’s merocyanine dye, Phys. Chem. Chem. Phys., 2011, 13, 1290.

    Article  CAS  PubMed  Google Scholar 

  12. A. R. Katritzky, D. C. Fara, H. Yang, K. Tämm, Quantitative measures of solvent polarity, Chem. Rev., 2004, 104, 175.

    Article  CAS  PubMed  Google Scholar 

  13. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319.

    Article  CAS  Google Scholar 

  14. K. Kudo, A. Momotake, Y. Kanna, Y. Nishimura and T. Arai, Development of a quinoxaline-based fluorescent probe for quantitative estimation of protein binding site polarity, Chem. Commun., 2011, 47, 3867.

    Article  CAS  Google Scholar 

  15. A. Marini, A. Munoz-Losa, A. Biancardi and B. Mennucci, What is solvatochromism?, J. Phys. Chem. B, 2010 114, 17128.

    Article  CAS  PubMed  Google Scholar 

  16. B. Mennucci, M. Caricato, F. Ingrosso, C. Cappelli, R. Cammi, J. Tomasi, G. Scalmani and M. J. Frisch, How the environment controls absorption and fluorescence spectra of PRODAN: a quantum-mechanical study in homogeneous and heterogeneous media, J. Phys. Chem. B, 2008 112, 414.

    Article  CAS  PubMed  Google Scholar 

  17. N. S. Moyon and S. Mitra, Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study, J. Phys. Chem. A, 2011, 115, 2456.

    Article  CAS  PubMed  Google Scholar 

  18. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, Chem. Rev., 1997 97, 1515.

    Article  PubMed  Google Scholar 

  19. M. Glasbeek and H. Zhang, Femtosecond studies of solvation and intramolecular configurational dynamics of fluorophores in liquid solution, Chem. Rev., 2004 104, 1929.

    Article  CAS  PubMed  Google Scholar 

  20. M. A. Haidekker and E. A. Theodorakis, Molecular rotors fluorescent biosensors for viscosity and flow, Org. Biomol. Chem., 2007 5, 1669.

    Article  CAS  PubMed  Google Scholar 

  21. M. Y. Berezin and S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chem. Rev., 2010 110, 2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Yan, J. Lu, J. Ma, S. Qin, M. Wei, D. G. Evans and X. Duan, Layered host–guest materials with reversible piezochromic luminescence, Angew. Chem., 2011 123, 7175.

    Article  Google Scholar 

  23. J.-S. Yang, K.-L. Liau, C.-Y. Li and M.-Y. Chen, Meta conjugation effect on the torsional motion of aminostilbenes in the photoinduced intramolecular charge-transfer state, J. Am. Chem. Soc., 2007 129, 13183.

    Article  CAS  PubMed  Google Scholar 

  24. P. K. Singh, M. Kumbhakar, H. Pal and S. Nath, Viscosity effect on the ultrafast bond twisting dynamics in an amyloid fibril sensor: thioflavin-T, J. Phys. Chem. B, 2010 114, 5920.

    Article  CAS  PubMed  Google Scholar 

  25. I. Yamaguchi, K. Goto and M. Sato, Synthesis of oligophenylenes containing hydroxyl group and their solvatochromic behavior, Tetrahedron, 2009 65, 3645.

    Article  CAS  Google Scholar 

  26. H. A. Meylemans, C.-F. Lei and N. H. Damrauer, Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems, Inorg. Chem., 2008 47, 4060.

    Article  CAS  PubMed  Google Scholar 

  27. A. Jana, S. Atta, S. K. Sarkar and N. D. Singh, 1-Acetylpyrene with dual functions as an environment-sensitive fluorophore and fluorescent photoremovable protecting group, Tetrahedron, 2010 66, 9798.

    Article  CAS  Google Scholar 

  28. K. M. Bushan, G. V. Rao, T. Soujanya, V. J. Rao, S. Saha and A. Samanta, Photochemical E (trans) → Z (cis) isomerization in substituted 1-naphthylacrylates, J. Org. Chem., 2001 66, 681.

    Article  CAS  PubMed  Google Scholar 

  29. F. D. Lewis and W. Liu, Temperature- and conformation-dependent luminescence of benzanilides, J. Phys. Chem. A, 2002 106, 1976.

    Article  CAS  Google Scholar 

  30. F. D. Lewis, P. Daublain, G. B. Delos Santos, W. Liu, A. M. Asatryan, S. A. Markarian, T. Fiebig, M. Raytchev and Q. Wang, Dynamics and mechanism of bridge-dependent charge separation in pyrenylurea-nitrobenzene π-stacked protophanes, J. Am. Chem. Soc., 2006 128, 4792.

    Article  CAS  PubMed  Google Scholar 

  31. M. Brozis, J. Heldt and J. R. Heldt, Spectroscopic studies of four new derivatives of benzamide, J. Photochem. Photobiol., A, 1999 128, 39.

    Article  CAS  Google Scholar 

  32. A. A. M. Prabhu, R. K. Sankaranarayanan, S. Siva and N. Rajendiran, Unusual spectral shifts on fast violet-B and benzanilide: Effect of solvents,: pH and β-cyclodextin, Spectrochim. Acta, Part A, 2009 74, 484.

    Article  CAS  Google Scholar 

  33. T. C. Werner and J. Rodgers, Studies on the fluorescence properties of meso-substituted amidoanthracenes, J. Photochem., 1986 32, 59.

    Article  CAS  Google Scholar 

  34. T. Morozumi, T. Anada and H. Nakamura, New fluorescent “off—on” behavior of 9-anthryl aromatic amides through controlling the twisted intramolecular charge transfer relaxation process by complexation with metal ions, J. Phys. Chem. B, 2001 105, 2923.

    Article  CAS  Google Scholar 

  35. I. A. Boldyrev and J. G. Molotkovsky, Fluorescent properties of 9-anthracenecarboxamides, Russ. J. Bioorg. Chem., 2004 30, 586.

    Article  CAS  Google Scholar 

  36. E. Lipczynsky-Kochany, Chemistry of hydroxamic acids XIV: the fluorescence of naphthalenecarboxhydroxamic acids and related amides, J. Photochem. Photobiol., A, 1988, 41, 187.

    Article  Google Scholar 

  37. I. Azumaya, H. Kagechika, Y. Fujiware, M. Itoh, K. Yamaguchi and K. Shudo, Twisted intramolecular charge-transfer fluorescence of aromatic amides: conformation of the amide bonds in excited states, J. Am. Chem. Soc., 1991 113, 2833.

    Article  CAS  Google Scholar 

  38. F. D. Lewis and T. M. Long, Anomalous dual fluorescence of benzanilide, J. Phys. Chem. A, 1998 102, 5327.

    Article  CAS  Google Scholar 

  39. X. Zhang, Y.-B. Jiang, Solvent-dependent intramolecular charge transfer dual fluorescence of p-dimethylaminobenzanilide bearing steric ortho,ortho-dimethyl substituents at amido aniline, Photochem. Photobiol. Sci., 2011 10, 1791.

    Article  CAS  PubMed  Google Scholar 

  40. F. D. Lewis and E. L. Burch, Conformation-dependent intramolecular electron transfer in N-(aminoalkyl)-9-phenanthrenecarboxamides, J. Phys. Chem., 1996, 100, 4055.

    Article  CAS  Google Scholar 

  41. C. Dugave and L. Demange, Cis-trans isomerization of organic molecules and biomolecules: implications and applications, Chem. Rev., 2003, 103, 2475.

    Article  CAS  PubMed  Google Scholar 

  42. C. Bohne, H. Ihmels, M. Waidelich and C. Yihwa, N-Acylureido functionality as acceptor substituent in solvatochromic fluorescence probes: detection of carboxylic acids,: alcohols, and fluoride ions, J. Am. Chem. Soc., 2005 127, 17158.

    Article  CAS  PubMed  Google Scholar 

  43. M. Albrecht, C. Bohne, A. Granzhan, H. Ihmels, T. C. S. Pace, A. Schnurpfeil, M. Waidelich and C. Yihwa, Dual fluorescence of 2-methoxyanthracene derivatives, J. Phys. Chem. A, 2007 111, 1036.

    Article  CAS  PubMed  Google Scholar 

  44. M. Schuster, B. Kugler, K.-H. König, The chromatography of metal chelates, XIX, Influence of the acyl substituents on the chromatographic properties of acylthiourea chelates, Fresenius’ J. Anal. Chem., 1990 338, 717.

    Article  CAS  Google Scholar 

  45. K. R. Koch, J. du Tout, M. R. Caira and C. Sacht, Synthesis and crystal structure of trans-bis(N,N-dibutyl-N-naphthoylthioureato)platinum(ii). First example of trans chelation of N,N-dialkyl-N′-acylthiourea ligands, J. Chem. Soc., Dalton Trans., 1994, 785.

    Google Scholar 

  46. A. M. Plutín, H. Márquez, E. Ochoa, M. Morales, M. Sosa, L. Morán, Y. Rodrígez, M. Suárez, N. Martín and C. Seoane, Alkylation of benzoyl and furoylthioureas as polydentate systems, Tetrahedron, 2000 56, 1533.

    Article  Google Scholar 

  47. G. Lessene, B. J. Smith, R. W. Gable and J. B. Baell, Characterization of the two fundamental conformations of benzoylureas and elucidation of the factors that facilitate their conformational interchange, J. Org. Chem., 2009 74, 6511.

    Article  CAS  PubMed  Google Scholar 

  48. P. Gaspari, T. Banarjee, W. P. Malachowski, A. J. Muller, G. C. Prendergast, J. DuHadaway, S. Bennett and A. M. Donovan, Structure-activity study of Brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors, J. Med. Chem., 2006, 49, 684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Okuniewski, J. Chojnacki and B. Becker, N-Benzoyl-N′-phenylurea, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, 66, o414.

    Article  CAS  Google Scholar 

  50. K. A. Haushalter, J. Lau and J. D. Roberts, An NMR investigation of the effect of hydrogen bonding on the rates of rotation about the C–N bonds in urea and thiourea, J. Am. Chem. Soc., 1996, 118, 8891.

    Article  CAS  Google Scholar 

  51. E. Szatan, J. R. Heldt and J. Heldt, Steady-state luminescence studies of some α and β derivatives of naphthanilide at 293 K and 77 K, J. Photochem. Photobiol., A, 1998, 115, 27.

    Article  CAS  Google Scholar 

  52. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, 1970.

    Google Scholar 

  53. C. Reichardt, Solvents and Solvent Effects on Organic Chemistry, Wiley-VCH, Weinheim, 3rd edn, 2003, ch. 4.2.

    Google Scholar 

  54. A. Bergen, C. Bohne, D. Fuentealba, H. Ihmels, T. C. S. Pace, M. Waidelich, C. Yihwa and J. W. Bats, Studies of the solvatochromic emission properties of N-aroylurea derivatives I: influence of the substitution pattern, Photochem. Photobiol. Sci., 2012, 11, 752.

    Article  CAS  PubMed  Google Scholar 

  55. M. Belletête and G. Durocher, Conformational changes upon excitation of dimethylamino para-substituted 3H-indoles. Viscosity and solvent effects, J. Phys. Chem., 1989, 93, 1793.

    Article  Google Scholar 

  56. O. F. Mohammed, O.-H. Kwon, C. M. Othon and A. H. Zewail, Charge transfer assisted by collective hydrogen-bonding dynamics, Angew. Chem., Int. Ed., 2009, 48, 6251.

    Article  CAS  Google Scholar 

  57. I. Matei, S. Ionescu and M. Hillebrand, in Solute–solvent hydrogen bond formation in the excited state. Experimental and theoretical evidence, ed. K.-L. Han and G.-J. Zhao, Hydrogen Bonding and Transfer in the Excited State, John Wiley and Sons, Chichester, UK, 2011, vol. 1, pp. 79–124.

    CAS  Google Scholar 

  58. A. Douhal, Breaking, making, and twisting of chemical bonds in gas, liquid, and nanocavities, Acc. Chem. Res., 2004, 37, 349.

    Article  CAS  PubMed  Google Scholar 

  59. F. Zhou, J. Shao, Y. Yang, J. Zhao, H. Guo, X. Li, S. Ji and Z. Zhang, Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states, Eur. J. Org. Chem., 2011, 4733.

    Google Scholar 

  60. M. Varne, V. Samant, J. A. Mondal, S. K. Nayak, H. N. Ghosh and D. K. Palit, Ultrafast relaxation dynamics of the excited states of 1-amino- and 1-(N,N-dimethylamino)-fluoren-9-ones, ChemPhysChem, 2009 10, 2979.

    Article  CAS  PubMed  Google Scholar 

  61. T. Yatsuhashi, Y. Nakajima, T. Shimada and H. Inoue, Photophysical properties of intramolecular charge-transfer excited singlet state of aminofluorenone derivatives, J. Phys. Chem. A, 1998 102, 3018.

    Article  CAS  Google Scholar 

  62. I. Balemenou and G. Pistolis, Experimental evidence for a highly reversible excited state equilibrium between s-Cis and s-Trans rotational isomers of 2-methoxynaphthalene in solution, J. Am. Chem. Soc., 2007 129, 13247.

    Article  CAS  Google Scholar 

  63. I. Balemenou, A. Kaloudi-Chantzea, N. Karakostas, K. Yannakopoula, I. M. Mavridis and G. Pistolis, Controlling the stereospecificity of a volume-conserving adiabatic photoisomerization within a nanotubular self-assembled cage: a reversible light–heat torque converter, J. Phys. Chem. B, 2011 115, 10665.

    Article  CAS  Google Scholar 

  64. J. L. Belletiere and M. M. Hiller, Exploratory synthetic methodology involving the acylureas, Synth. Commun., 1989, 19, 3543.

    Article  Google Scholar 

  65. C. Faustino, L. García-Río, J. R. Leis and F. Norberto, Decomposition of N-benzoyl-N-nitrosoureas in aqueous media, Eur. J. Org. Chem., 2005, 154.

    Google Scholar 

  66. J. N. Demas and G. A. Crosby, The measurement of photoluminescence quantum yields. A review, J. Phys. Chem., 1971, 75, 991.

    Article  Google Scholar 

  67. C. Bohne, R. W. Redmond and J. C. Scaiano, in Photochemistry in Organized and Constrained Media, ed. V. Ramamurthy, VCH Publishers. Inc., New York, 1991, pp. 79–132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornelia Bohne or Heiko Ihmels.

Additional information

Electronic supplementary information (ESI) available: 1H-NMR spectroscopy and X-ray diffraction analysis; absorption and steady-state emission properties in different solvents; time-resolved emission properties in different solvents; studies in media with different viscosity and temperature; 1H-NMR and 13C-NMR data of 2a–e. CCDC 884407 (2a), 880988 (2b), 880989 (2c) and 884408 (2d). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2pp25167a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergen, A., Bohne, C., Fuentealba, D. et al. Studies of the solvatochromic emission properties of N-aroylurea derivatives II: influence of hydrogen-bonding interactions. Photochem Photobiol Sci 11, 1914–1928 (2012). https://doi.org/10.1039/c2pp25167a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25167a

Navigation