Skip to main content
Log in

Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Most applications of photoremovable protecting groups have used o-nitrobenzyl compounds and their (often commercially available) derivatives that, however, have several disadvantages. The focus of this review is on applications of the more recently developed title compounds, which are especially well suited for time-resolved biochemical and physiological investigations, because they release the caged substrates in high yield within a few nanoseconds or less. Together, these two chromophores cover the action spectrum for photorelease from >700 nm to 250 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441.

    Article  PubMed  Google Scholar 

  2. C. G. Bochet, Photolabile protecting groups and linkers, J. Chem. Soc., Perkin Trans. 1, 2002, 125.

    Google Scholar 

  3. Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, ed. M. Goeldner and R. Givens, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  4. Y. V. Il’ichev, M. A. Schwörer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP, J. Am. Chem. Soc., 2004, 126, 4581.

    Article  PubMed  CAS  Google Scholar 

  5. B. Hellrung, Y. Kamdzhilov, M. Schwörer and J. Wirz, Photorelease of alcohols from 2-nitrobenzyl ethers proceeds via hemiacetals and may be further retarded by buffers intercepting the primary aci-nitro intermediates, J. Am. Chem. Soc., 2005, 127, 8934.

    Article  CAS  PubMed  Google Scholar 

  6. X. Du, H. Frei, S.-H. Kim, Comparison of nitrophenylethyl and hydroxyphenacyl caging groups, Biopolymers, 2001, 62, 147.

    Article  CAS  PubMed  Google Scholar 

  7. C. Kötting, J. Güldenhaupt and K. Gerwert, Time-resolved FTIR spectroscopy for monitoring protein dynamics exemplified by functional studies of as protein bound to a lipid bilayer, Chem. Phys., 2011, DOI: 10.1016/j.chemphys.2011.08.007.

    Google Scholar 

  8. R. S. Givens, C.-H. Park, p-Hydroxyphenacyl ATP: a new phototrigger, Tetrahedron Lett., 1996, 37, 6259.

    Article  CAS  Google Scholar 

  9. C.-H. Park and R. S. Givens, New photoactivated protecting groups. 6. p-Hydroxyphenacyl: a phototrigger for chemical and biochemical probes, J. Am. Chem. Soc., 1997, 119, 2453.

    Article  CAS  Google Scholar 

  10. R. S. Givens and B. Matuszewski, Photochemistry of phosphate esters: an efficient method for the generation of electrophiles, J. Am. Chem. Soc., 1984, 106, 6860.

    Article  CAS  Google Scholar 

  11. J. C. Anderson and C. B. Reese, A photo-induced rearrangement involving aryl participation, Tetrahedron Lett., 1962, 3, 1.

    Article  Google Scholar 

  12. R. S. Givens, D. Heger, B. Hellrung, Y. Kamdzhilov, M. Mac, P. G. Conrad, E. Lee, J. I. Cope, J. F. Mata-Segreda, R. L. Schowen and J. Wirz, The photo-Favorskii reaction of p-hydroxyphenacyl compounds is initiated by water-assisted, adiabatic extrusion of a triplet biradical, J. Am. Chem. Soc., 2008, 130, 3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. J. Pickens and K. R. Gee, Photolabile thymidine cleavable with a 532 nanometer laser, Tetrahedron Lett., 2011, 52, 4989.

    Article  CAS  Google Scholar 

  14. C. Ma, W. M. Kwok, W. S. Chan, Y. Du, J. T. W. Kan, P. H. Toy and D. L. Phillips, Ultrafast time-resolved transient absorption and resonance Raman spectroscopy study of the photodeprotection and rearrangement reactions of p-hydroxyphenacyl caged phosphates, J. Am. Chem. Soc., 2006, 128, 2558.

    Article  CAS  PubMed  Google Scholar 

  15. D. Heger and J. Wirz, unpublished results.

  16. M. Remes, J. Roithova, D. Schroeder, E. D. Cope, C. Perera, S. N. Senadheera, K. Stensrud, C.-C. Ma and R. S. Givens, Gas-phase fragmentation of deprotonated p-hydroxyphenacyl derivatives, J. Org. Chem., 2011, 76, 2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. For quantum yields, see ref. 5, 8, 10 and 15, and E. Cope, PhD thesis, University of Kansas, 2007.

  18. K. Zhang, J. E. T. Corrie, V. R. N. Munasinghe and P. Wan, Mechanism of photosolvolytic rearrangement of p-hydroxyphenacyl esters: evidence for excited-state intramolecular proton transfer as the primary photochemical step, J. Am. Chem. Soc., 1999, 121, 5625. We have also tested our pHP derivatives for stability in base (pH > 9) in control experiments and found no rearrangement products.

    Article  CAS  Google Scholar 

  19. R. S. Givens, J. F. W. Weber, A. H. Jung and C.-H. Park, New photoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters, in Methods in Enzymology, ed. G. Marriott, Academic Press, New York, 1998, vol. 291 p. 1.

    Article  CAS  PubMed  Google Scholar 

  20. R. S. Givens and A. L. Yousef, p-Hydroxyphenacyl: a photoremovable protecting group for caging bioactive substrates, in: ref. 1c, p. 55.

  21. See: R. S. Givens, J. F. W. Weber, P. G. Conrad II, G. Orosz, S. L. Donahue and S. A. Thayer, New phototriggers 9: p-hydroxyphenacyl as a C-terminal photoremovable protecting group for oligopeptides, J. Am. Chem. Soc., 2000, 122, 2687.

    Article  CAS  Google Scholar 

  22. P. G. Conrad II, R. S. Givens, J. F. Weber and K. Kandler, New phototriggers:1 extending the p-hydroxyphenacyl p–p* absorption range, Org. Lett., 2000, 2, 1545, for early examples of amino acid neurotransmitter and oligopeptide applications.

    Article  CAS  PubMed  Google Scholar 

  23. R. S. Givens, K. Stensrud, P. G. Conrad II, A. L. Yousef, C. Perera, S. N. Senadheera, D. Heger and J. Wirz, p-Hydroxyphenacyl photoremovable protecting groups: robust photochemistry despite substituent diversity, Can. J. Chem., 2011, 89, 364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. G. Conrad II, R. S. Givens, B. Hellrung, C. S. Rajesh, M. Ramseier and J. Wirz, p-Hydroxyphenacyl phototriggers: the reactive excited state of phosphate photorelease, J. Am. Chem. Soc., 2000, 122, 9346.

    Article  CAS  Google Scholar 

  25. R. S. Givens, P. G. Conrad II, A. L. Yousef and J.-I. Lee, Photoremovable protecting groups, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool, 2nd edn, 2003, ch. 69.

    Google Scholar 

  26. R. S. Givens, J.-I. Lee, The p-hydroxyphenacyl photoremovable protecting group, J. Photoscience, 2003, 10, 37.

    CAS  Google Scholar 

  27. C. Kötting, Y. Surveyzdis, R. S. Bojja, N. Metzler-Nolte and K. Gerwert, Label-free screening of drug–protein interactions by trFTIR spectroscopic assays exemplified by Ras interactions, Appl. Spectrosc., 2010, 64, 967.

    Article  PubMed  Google Scholar 

  28. C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy and D. L. Phillips, Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds, J. Am. Chem. Soc., 2005, 127, 1463.

    Article  CAS  PubMed  Google Scholar 

  29. X. Chen, C. Ma, W. M. Kwok, X. Guan, Y. Du and D. L. Phillips, A theoretical investigation of p-hydroxyphenacyl caged phototrigger compounds: an examination of the excited state photochemistry of p-hydroxyphenacyl acetate, J. Phys. Chem. A, 2006, 110, 12406.

    Article  CAS  PubMed  Google Scholar 

  30. C. Ma, W. S. Chan, W. M. Kwok, P. Zuo and D. L. Phillips, Time-resolved resonance Raman study of the triplet state of the p-hydroxyphenacyl acetate model phototrigger compound, J. Phys. Chem. B, 2004, 108, 9264.

    Article  CAS  Google Scholar 

  31. C. Ma, P. Zuo, W. M. Kwok, W. S. Chan, J. T. W. Kan, P. H. Toy and D. L. Phillips, Time-resolved resonance Raman study of the triplet states of p-hydroxyacetophenone and the p-hydroxyphenacyl diethyl phosphate phototrigger compound, J. Org. Chem., 2004, 69, 6641.

    Article  CAS  PubMed  Google Scholar 

  32. X. Chen, C. Ma, W. M. Kwok, X. Guan, Y. Du and D. L. Phillips, A theoretical investigation of p-hydroxyphenacyl caged phototrigger compounds: how water induces the photodeprotection and subsequent rearrangement reactions, J. Phys. Chem. B, 2007, 111, 11832.

    Article  CAS  PubMed  Google Scholar 

  33. S. Geibel, A. Barth, S. Amslinger, A. H. Jung, C. Burzik, R. J. Clarke, R. S. Givens and K. Fendler, P3-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP for the rapid activation of the Na+, K+-ATPase, Biophys. J., 2000, 79, 1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Specht, S. Loudwig, L. Peng and M. Goeldner, p-Hydroxyphenacyl bromide as photoreversible thiol label: a potential phototrigger for thiol-containing biomolecules, Tetrahedron Lett., 2002, 43, 8947.

    Article  CAS  Google Scholar 

  35. K. Zou, W. T. Miller, R. S. Givens and H. Bayley, Caged thiophosphotyrosine peptides, Angew. Chem., Int. Ed., 2001, 40, 3049.

    Article  CAS  Google Scholar 

  36. K. Zou, S. Cheley, R. S. Givens and H. Bayley, Catalytic subunit of protein kinase A caged at the activating phosphothreonine, J. Am. Chem. Soc., 2002, 124, 8220.

    Article  CAS  PubMed  Google Scholar 

  37. X. Du, H. Frei, S.-H. Kim, The mechanism of GTP hydrolysis by Ras probed by Fourier transform infrared spectroscopy, J. Biol. Chem., 2000, 275, 8492.

    Article  CAS  PubMed  Google Scholar 

  38. C. Kötting and K. Gerwert, Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions, Chem. Phys., 2004, 307, 227.

    Article  CAS  Google Scholar 

  39. B. Sot, C. Kötting, D. Deaconescu, Y. Suveyzdis, K. Gerwert and A. Wittinghofer, Unravelling the mechanism of dual-specificity GAPs, EMBO J., 2010, 29, 1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P. G. C. Conrad, R. V. Chavli and R. S. Givens, Caged substrates applied to high content screening: an introduction with an eye to the future, in High Content Screening: A Powerful Approach in Systems Cell Biology and Drug Discovery, Methods in Molecular Biology, ed. K. A. Giuliano, J. Haskins and D. L. Taylor, Humana Press Inc., Totowa, NJ, United States, 2007, p. 253.

    Google Scholar 

  41. C. Kötting, A. Kallenbach, Y. Suveyzdis, C. Eichholz and K. Gerwert, Surface change of Ras enabling effector binding monitored in real time at atomic resolution, ChemBioChem, 2007, 8, 781.

    Article  PubMed  CAS  Google Scholar 

  42. B. Warscheid, S. Brucker, A. Kallenbach, H. E. Meyer, K. Gerwert, C. Kötting, Systematic approach to group-specific isotopic labeling of proteins for vibrational spectroscopy, Vib. Spectrosc., 2008, 48, 28.

    Article  CAS  Google Scholar 

  43. S. Brucker, K. Gerwert, C. Kötting, Try 39 of ran preserves the Ran.GTP gradientby inhibiting GTP hydrolysis, J. Mol. Biol., 2010, 401, 1–6.

    Article  CAS  PubMed  Google Scholar 

  44. G. Arabaci, X.-C. Guo, K. D. Beebe, K. M. Coggeshall and D. Pei, r-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases, J. Am. Chem. Soc., 1999, 121, 5085.

    Article  CAS  Google Scholar 

  45. T. W. Greene and P. G. M. Wutts, Greene’s Protective Groups in Organic Synthesis, Wiley-Interscience, J. Wiley and Sons, 4th edn, 2007.

    Google Scholar 

  46. M. Alvarez, J. M. Alonso, O. Filevich, M. Bhagawati, R. Etchenique, J. Piehler and A. del Campo, Modulating surface density of proteins via caged surfaces and controlled light exposure, Langmuir, 2011, 27, 2789

    Article  CAS  PubMed  Google Scholar 

  47. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat. Methods, 2007, 4, 619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. K. G. Dorman and G. D. Prestwich, Using photolabile ligands in drug discovery and development, Trends Biotechnol., 2000, 18, 54

    Article  Google Scholar 

  49. Y. Kikuchi, J. Nakanishi, T. Shimizu, H. Nakayama, S. Inoue, K. Yamaguchi, H. Iwai, Y. Yoshida, Y. Horiike, T. Takarada and M. Maeda, Arraying heterotypic single cells on photoactivatable cell-culturing substrates, Langmuir, 2008, 24, 13084, and references therein

    Article  CAS  PubMed  Google Scholar 

  50. M. C. Pirrung and V. S. Rana, Photoremovable protecting groups in DNA synthesis and microarray fabrication, in: ref. 1c, p. 341.

  51. See, for example: J. P. Casey, R. A. Blidner and W. T. Monroe, Caged siRNAs for spatiotemporal control of gene silencing, Mol. Pharmacol., 2009, 6, 669

    Article  CAS  Google Scholar 

  52. H.-M. Lee, D. R. Larson and D. S. Lawrence, Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds, ACS Chem. Biol., 2009, 4, 409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G. Mayer and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900

    Article  CAS  Google Scholar 

  54. D. D. Young and A. Deiters, Photochemical control of biological processes, Org. Biomol. Chem., 2007, 5, 999.

    Article  CAS  PubMed  Google Scholar 

  55. R. Schmidt, D. Geissler, V. Hagen and J. Bendig, Mechanism of photocleavage of (coumarin-4-yl)methyl esters, J. Phys. Chem. A, 2007, 111, 5768.

    Article  CAS  PubMed  Google Scholar 

  56. C. Schultz, Molecular tools for cell and systems biology, HFSP J., 2007, 1, 230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. S. C. Fonseca, M. S. T. Gonçalves, S. P. G. Costa, Photocleavage studies of fluorescent amino acid conjugates bearing different types of linkages, Tetrahedron, 2007, 63, 1353.

    Article  CAS  Google Scholar 

  58. B. Cürten, P. H. M. Kullmann, M. E. Bier, K. Kandler and B. F. Schmidt, Synthesis, photophysical, photochemical and biological properties of caged GABA, 4-[[(2H-1-benzopyran-2-one-7-amino-4-methoxy) carbonyl] amino] butanoic acid, Photochem. Photobiol., 2005, 81, 641.

    Article  PubMed  Google Scholar 

  59. M. J. G. Fernandes, M. S. T. Gonçalves, S. P. G. Costa, Comparative study of polyaromatic and polyheteroaromatic fluorescent photocleavable protecting groups, Tetrahedron, 2008, 64, 3032.

    Article  CAS  Google Scholar 

  60. A. Z. Suzuki, T. Watanabe, M. Kawamoto, K. Nishiyama, H. Yamashita, M. Ishii, M. Iwamura and T. Furuta, Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols, Org. Lett., 2003, 5, 4867.

    Article  CAS  PubMed  Google Scholar 

  61. T. Eckardt, V. Hagen, B. Schade, R. Schmidt, C. Schweitzer and J. Bendig, Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′,5′-monophosphates with Fluorescence enhancement, J. Org. Chem., 2002, 67, 703.

    Article  CAS  PubMed  Google Scholar 

  62. K. Takaoka, Y. Tatsu, N. Yumoto, T. Nakajima and K. Shimamoto, Synthesis of carbamate-type caged derivatives of a novel glutamate transporter blocker, Bioorg. Med. Chem. Lett., 2004, 12, 3687.

    Article  CAS  Google Scholar 

  63. N. Senda, A. Momotake and T. Arai, Synthesis and photocleavage of 7-[s(carboxymethyl)aminocoumarin-4-yl]methyl-caged neurotransmitters, Bull. Chem. Soc. Jpn., 2007, 80, 2384.

    Article  CAS  Google Scholar 

  64. V. Hagen, S. Frings, J. Bendig, D. Lorenz, B. Wiesner and U. B. Kaupp, Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable [bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells, Angew. Chem., Int. Ed., 2002, 41, 3625.

    Article  CAS  Google Scholar 

  65. N. Kotzur, B. Briand, M. Beyermann and V. Hagen, Wavelength-selective photoactivatable protecting groups for thiols, J. Am. Chem. Soc., 2009, 131, 16927.

    Article  CAS  PubMed  Google Scholar 

  66. T. Furuta, T. Watanabe, S. Tanabe, J. Sakyo and C. Matsuba, Phototriggers for nucleobases with improved photochemical properties, Org. Lett., 2007, 9, 4717.

    Article  CAS  PubMed  Google Scholar 

  67. M. Lu, O. D. Fedoryak, B. R. Moister and T. M. Dore, Bhc-diol as a photolabile protecting group for aldehydes and ketones, Org. Lett., 2003, 5, 2119.

    Article  CAS  PubMed  Google Scholar 

  68. V. Hagen, F. Kilic, J. Schaal, B. Dekowski, R. Schmidt and N. Kotzur, [8-[Bis(carboxymethyl)aminomethyl]-6-bromo-7-hydroxycoumarin-4-yl]methyl moieties as photoremovable protecting groups for compounds with COOH, NH2, OH, and CO functions, J. Org. Chem., 2010, 75, 2790.

    Article  CAS  PubMed  Google Scholar 

  69. R. Subramaniam, Y. Xiao, Y. Li, S. Y. Qian, W. Sun and S. Mallik, Light-mediated and H-bond facilitated liposomal release: the role of lipid head groups in release efficiency, Tetrahedron Lett., 2010, 51, 529.

    Article  CAS  Google Scholar 

  70. D. Geissler, W. Kresse, B. Wiesner, J. Bendig, H. Kettenmann and V. Hagen, DMACM-caged adenosine nucleotides: ultrafast phototriggers for ATP, ADP and AMP activated by long-wavelength irradiation, ChemBioChem, 2003, 4, 162.

    Article  CAS  PubMed  Google Scholar 

  71. A. V. Pinheiro, P. Baptista and J. C. Lima, Light activation of transcription: photocaging of nucleotides for control over RNA polymerization, Nucleic Acids Res., 2008, 36, e90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. V. R. Shembekar, Y. Chen, B. K. Carpenter and G. P. Hess, A protecting group for carboxylic acids that can be photolysed by visible light, Biochemistry, 2005, 44, 7107.

    Article  CAS  PubMed  Google Scholar 

  73. V. R. Shembekar, Y. Chen, B. K. Carpenter and G. P. Hess, Coumarin-caged glycine that can be photolyzed within 3 microseconds by visible light, Biochemistry, 2007, 46, 5479.

    Article  CAS  PubMed  Google Scholar 

  74. R. O. Schönleber, J. Bendig, V. Hagen and B. Giese, Rapid photolytic release of cytidine 5′-diphosphate from a coumarin derivative: a new tool for the investigation of ribonucleotide reductases, Bioorg. Med. Chem., 2002, 10, 97.

    Article  PubMed  Google Scholar 

  75. M. Skwarczynski, M. Noguchi, S. Hirota, Y. Sohma, T. Kimura, Y. Hayashi and Y. Kiso, Development of first photoresponsive prodrug of paclitaxel, Bioorg. Med. Chem. Lett., 2006, 16, 4492.

    Article  CAS  PubMed  Google Scholar 

  76. N. Senda, A. Momotake and T. Arai, Synthesis and photocleavage of 7-[s(carboxymethyl)aminocoumarin-4-yl]methyl-caged neurotransmitters, Bull. Chem. Soc. Jpn., 2007, 80, 2384.

    Article  CAS  Google Scholar 

  77. V. Hagen, B. Dekowski, V. Nache, R. Schmidt, D. Geißler, D. Lorenz, J. Eichhorst, S. Keller, H. Kaneko, K. Benndorf and B. Wiesner, Coumarinylmethyl esters for ultrafast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis, Angew. Chem., Int. Ed., 2005, 44, 7887.

    Article  CAS  Google Scholar 

  78. A. Taniguchi, M. Skwarczynski, Y. Sohma, T. Okada, K. Ikeda, H. Prakash, H. Mukai, Y. Hayashi, T. Kimura, S. Hirota, K. Matsuzaki and Y. Kiso, Controlled production of amyloid ß peptide from a photo-triggered, water-soluble precursor “click peptide”, ChemBioChem, 2008, 9, 3055.

    Article  CAS  PubMed  Google Scholar 

  79. A. M. Piloto, D. Rovira, S. P. G. Costa, M. S. T. Gonçalves, Oxobenzo[f]benzopyrans as new fluorescent photolabile protecting groups for the carboxylic function, Tetrahedron, 2006, 62, 11955.

    Article  CAS  Google Scholar 

  80. M. J. G. Fernandes, M. S. T. Gonçalves, S. P. G. Costa, Neurotransmitter amino acid–oxobenzo[f]benzopyran conjugates: synthesis and photorelease studies, Tetrahedron, 2008, 64, 11175.

    Article  CAS  Google Scholar 

  81. A. V. Pinheiro, A. J. Parola, P. V. Baptista and J. C. Lima, pH effect on the photochemistry of 4-methylcoumarin phosphate esters: caged-phosphate case study, J. Phys. Chem. A, 2010, 114, 12795.

    Article  CAS  PubMed  Google Scholar 

  82. T. Furuta, Coumarin-4-ylmethyl phototriggers in ref. 1c, p. 29.

  83. T. Kawakami, H. Cheng, S. Hashiro, Y. Nomura, S. Tsukiji, T. Furuta and T. Nagamune, A caged phosphopeptide-based approach for photochemical activation of kinases in living cells, ChemBioChem, 2008, 9, 1583.

    Article  CAS  PubMed  Google Scholar 

  84. M. Mentel, V. Laketa, D. Subramanian, H. Gillandt and C. Schultz, Photoactivatable and cell-membrane-permeable phosphatidylinositol 3,4,5-trisphosphate, Angew. Chem., Int. Ed., 2011, 50, 3811.

    Article  CAS  Google Scholar 

  85. B. Schade, V. Hagen, R. Schmidt, R. Herbrich, E. Krause, T. Eckardt and J. Bendig, Deactivation Behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 1. Photocleavage of (7-methoxycoumarin-4-yl)methyl-caged acids with Fluorescence enhancement, J. Org. Chem., 1999, 64, 9109.

    Article  CAS  Google Scholar 

  86. T. Furuta, H. Torigai, M. Sugimoto and M. Iwamura, Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution, J. Org. Chem., 1995, 60, 3953.

    Article  CAS  Google Scholar 

  87. T. Furuta, H. Takeuchi, M. Isozaki, Y. Takahashi, M. Kanehara, M. Sugimoto, T. Watanabe, K. Noguchi, T. M. Dore, T. Kurahashi, M. Iwamura and R. Y. Tsien, Bhc-cNMPs as either water-soluble or membrane-permeant photo-releasable cyclic nucleotides for both one and two-photon excitation, ChemBioChem, 2004, 5, 1119.

    Article  CAS  PubMed  Google Scholar 

  88. D. Warther, S. Gug, A. Specht, F. Bolze, J.-F. Nicoud, A. Mourot and M. Goeldner, Two-photon uncaging: new prospects in neuroscience and cellular biology, Bioorg. Med. Chem., 2010, 18, 7753.

    Article  CAS  PubMed  Google Scholar 

  89. C. Menge and A. Heckel, Coumarin-caged dG for improved wavelength-selective uncaging of DNA, Org. Lett., 2011, 13, 4620.

    Article  CAS  PubMed  Google Scholar 

  90. S. Atta, A. Jana, R. Ananthakirshnan, P. S. N. Dhuleep, Fluorescent caged compounds of 2,4-dichlorophenoxyacetic acid (2,4-D): photorelease technology for controlled release of 2,4-D, J. Agric. Food Chem., 2010, 58, 11844.

    Article  CAS  PubMed  Google Scholar 

  91. V. Hagen, B. Dekowski, N. Kotzur, R. Lechler, B. Wiesner, B. Briand and M. Beyermann, 7-[bis(carboxymethyl)amino]coumarin-4-ylmethoxycarbonyl derivatives for photorelease of carboxylic acids, alcohols/phenols, thioalcohols/thiophenols, and amines, Chem.–Eur. J., 2008, 14, 1621.

    Article  CAS  PubMed  Google Scholar 

  92. V. R. Shembekar, B. K. Carpenter, L. Ramachandran and G. P. Hess, Development of photolabile protecting groups that rapidly release bioactive compounds on photolysis with visible light, Polym. Prepr., 2004, 45, 8893.

    Google Scholar 

  93. L. Fan, R. W. Lewis, G. P. Hess and B. Ganem, A new synthesis of caged GABA compounds for studying GABAA receptors, Bioorg. Med. Chem. Lett., 2009, 19, 3932.

    Article  CAS  PubMed  Google Scholar 

  94. S. L. Johnson and D. L. Morrison, Kinetics and mechanism of decarboxylation of N-arylcarbamates. Evidence for kinetically important zwitterionic carbamic acid species of short lifetime, J. Am. Chem. Soc., 1972, 94, 1323.

    Article  CAS  PubMed  Google Scholar 

  95. G. Papageorgiou, A. Barth, J. E. T. Corrie, Flash photolytic release of alcohols from photolabile carbamates or carbonates is rate-limited by decarboxylation of the photoproduct, Photochem. Photobiol. Sci., 2005, 4, 216.

    Article  CAS  PubMed  Google Scholar 

  96. F. M. Rossi, J. P. Y. Kao, Nmoc-DBHQ: A new caged molecule for modulating sarcoplasmic/endoplasmic reticulum Ca2+ ATPase activity with light flashes, J. Biol. Chem., 1997, 272, 3266.

    Article  CAS  PubMed  Google Scholar 

  97. Y. Pocker, B. L. Davison and T. L. Deits, Decarboxylation of monosubstituted derivatives of carbonic acid. Comparative studies of water- and acid-catalyzed decarboxylation of sodium alkyl carbonates in water and water-d2, J. Am. Chem. Soc., 1978, 100, 3564.

    Article  CAS  Google Scholar 

  98. F. M. Rossi, M. Margulis, C.-M. Tang, J. P. Y. Kao, N-Nmoc-glutamate: A new caged glutamate with high chemical stability and low pre-photolysis activity, J. Biol. Chem., 1997, 272, 32933.

    Article  CAS  PubMed  Google Scholar 

  99. S. Loudwig and H. Bayley, Light-activated proteins: an overview, in ref. 1c, p. 253–304.

  100. K. Katayama, S. Tsukiji, T. Furuta and T. Nagamune, A bromocoumarin-based linker for synthesis of photocleavable peptidoconjugates with high photosensitivity, Chem. Commun., 2008, 5399.

    Google Scholar 

  101. S. Yamaguchi, Y. Chen, S. Nakajima, T. Furuta and T. Nagamune, Light-activated gene expression from site-specific caged DNA with a biotinylated photolabile protection group, Chem. Commun., 2010, 46, 2244.

    Article  CAS  Google Scholar 

  102. M. Skwarczynski, M. Noguchi, S. Hirota, Y. Sohma, T. Kimura, Y. Hayashi and Y. Kiso, Development of first photoresponsive prodrug of paclitaxel, Bioorg. Med. Chem. Lett., 2006, 16, 4492.

    Article  CAS  PubMed  Google Scholar 

  103. M. Noguchi, M. Skwarczynski, H. Prakash, S. Hirota, T. Kimura, Y. Hayashi and Y. Kiso, Development of novel water-soluble photocleavable protective group and its application for design of photoresponsive paclitaxel prodrugs, Bioorg. Med. Chem., 2008, 16, 5389.

    Article  CAS  PubMed  Google Scholar 

  104. V. San Miguel, C. G. Bochet and A. del Campo, Wavelength-selective caged surfaces: how many functional levels are possible?, J. Am. Chem. Soc., 2011, 133, 5380.

    Article  CAS  Google Scholar 

  105. P. Stegmaier, J. M. Alonso and A. del Campo, Photoresponsive surfaces with two independent wavelength-selective functional levels, Langmuir, 2008, 24, 11872.

    Article  CAS  PubMed  Google Scholar 

  106. R. G. Wylie and M. S. Shoichet, Two-photon micropatterning of amines within an agarose hydrogel, J. Mater. Chem., 2008, 18, 2716.

    Article  CAS  Google Scholar 

  107. J. H. Woznick and M. S. Shoichet, Three-dimensional chemical patterning of transparent hydrogels, Chem. Mater., 2008, 20, 55.

    Article  CAS  Google Scholar 

  108. W. Lin, L. Long, W. Tan, B. Chen and L. Yuan, Coumarin-caged rosamine probes based on a unique intramolecular carbon–carbon spirocyclization, Chem.–Eur. J., 2010, 16, 3914.

    Article  CAS  PubMed  Google Scholar 

  109. J. Ottl, D. Gabriel and G. Marriott, Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents, Bioconjugate Chem., 1998, 9, 143.

    Article  CAS  Google Scholar 

  110. D. Gilbert, K. Funk, B. Dekowski, R. Lechler, S. Keller, F. Möhrlen, S. Frings and V. Hagen, Caged capsaicins: new tools for the examination of TRPV1 channels in somatosensory neurons, ChemBioChem, 2007, 8, 89.

    Article  CAS  PubMed  Google Scholar 

  111. F. Kilic, N. D. Kashikar, R. Schmidt, L. Alvarez, L. Dai, I. Weyand, B. Wiesner, N. Goodwin, V. Hagen and U. B. Kaupp, Caged progesterone: a new tool for studying rapid nongenomic actions of progesterone, J. Am. Chem. Soc., 2009, 131, 4027.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Givens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Givens, R.S., Rubina, M. & Wirz, J. Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem Photobiol Sci 11, 472–488 (2012). https://doi.org/10.1039/c2pp05399c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05399c

Navigation