Skip to main content
Log in

Luminescent terbium(iii) complex-based titania sensing material for fluoride and its photocatalytic properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new terbium 2-isopropylimidazole-4,5-dicarboxylic acid complex was prepared and incorporated into titanium dioxide matrix by mild sol–gel method. Then we fabricated a terbium luminescent hybrid material, which displayed striking green emission even in pure water. It was interesting to find that this target material exhibited highly selective and fast (1 s) quenching effect to F- compared with CH3COO-, Cl-, Br-, I-. We recognized that the hydrogen bonding interactions between fluoride and ligand resulted in the recognition process. More significantly, this hybrid titania material prepared under low temperature (80 °C) could be used in photodegradation of methyl orange in aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Robertson, S. Shinkai, Cooperative binding in selective sensors: catalysts and actuators, Coord. Chem. Rev., 2000, 205, 57.

    Article  Google Scholar 

  2. T. Michinobu, S. Shinoda, T. Nakanishi, J. P. Hill, K. Fujii, T. N. Player, H. Tsukube, K. Ariga, Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure, Phys. Chem. Chem. Phys., 2011, 13, 4895.

    Article  CAS  Google Scholar 

  3. H. N. Kim, Z.-Q. Guo, W.-H. Zhu, J. Yoon, H. Tian, Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev., 2011, 40, 79.

    Article  CAS  Google Scholar 

  4. K. H. Chalmers, M. Botta, D. Parker, Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for F-19 magnetic resonance, Dalton Trans., 2011, 40, 904.

    Article  CAS  Google Scholar 

  5. R. B. P. Elmes, T. Gunnlaugsson, Luminescence anion sensing via modulation of MLCT emission from a naphthalimide-Ru(ii)-polypyridyl complex, Tetrahedron Lett., 2010, 51, 4082.

    Article  CAS  Google Scholar 

  6. J. C. G. Bunzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev., 2005, 34, 1048.

    Article  Google Scholar 

  7. C. M. G. dosSantos, P. B. Fernandez, S. E. Plush, J. P. Leonard, T. Gunnlaugsson, Lanthanide luminescent anion sensing: evidence of multiple anion recognition through hydrogen bonding and metal ion coordination, Chem. Commun., 2007, 3389.

    Google Scholar 

  8. D. Parker, Luminescent lanthanide sensors for pH, pO2 and selected anions, Coord. Chem. Rev., 2000, 205, 109.

    Article  CAS  Google Scholar 

  9. P. Atkinson, Y. Bretonniere, D. Parker, Chemoselective signalling of selected phospho-anions using lanthanide luminescence, Chem. Commun., 2004, 438.

    Google Scholar 

  10. R. K. Mahajan, I. Kaur, R. Kaur, S. Uchida, A. Onimaru, S. Shinoda, H. Tsukube, Anion receptor functions of lanthanide tris(b-diketonate) complexes: naked eye detection and ion-selective electrode determination of Cl- anion, Chem. Commun., 2003, 2238.

    Google Scholar 

  11. H. Tsukube, A. Onimaru, S. Shinoda, Anion sensing with luminescent tris(b-diketonato)europium(iii) complexes and naked-eye detection of fluoride anion, Bull. Chem. Soc. Jpn., 2006, 79, 725.

    Article  CAS  Google Scholar 

  12. T. Yamada, S. Shinoda, H. Tsukube, Anion sensing with luminescent lanthanide complexes of tris(2-pyridylmethyl)amines: pronounced effects of lanthanide center and ligand chirality on anion selectivity and sensitivity, Chem. Commun., 2002, 1218.

    Google Scholar 

  13. T. Gunnlaugsson, J. P. Leonard, Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures, Chem. Commun., 2005, 3114.

    Google Scholar 

  14. C. M. G. dosSantos, A. J. Harte, S. J. Quinn, T. Gunnlaugsson, Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies, Coord. Chem. Rev., 2008, 252, 2512.

    Article  CAS  Google Scholar 

  15. N. S. Murray, S. P. Jarvis, T. Gunnlaugsson, Luminescent self-assembly formation on a gold surface observed by reversible “off–on” switching of Eu(iii) emission, Chem. Commun., 2009, 4959.

    Google Scholar 

  16. Q.-M. Wang, H. Tamiaki, Highly efficient and selective turn-off quenching of ligand-sensitized luminescence from europium imidazo[4,5-f]-1,10-phenanthroline complex by fluoride ion, J. Photochem. Photobiol., A, 2009, 206, 124.

    Article  CAS  Google Scholar 

  17. C.-L. Tan, Q.-M. Wang, L.-J. Ma, Fluorescent-based Solid Sensor for HSO4- in Water, Photochem. Photobiol., 2010, 86, 1191.

    Article  CAS  Google Scholar 

  18. Q.-M. Wang, C.-L. Tan, H.-Y. Chen, H. Tamiaki, A new fluoride luminescence quencher based on a nanostructured covalently bonded terbium hybrid material, J. Phys. Chem. C, 2010, 114, 13879.

    Article  CAS  Google Scholar 

  19. C. Wang, B. Yan, J.-L. Liu, L. Guo, Photoactive Europium Hybrids of ß-Diketone-Modified Polysilsesquioxane Bridge Linking Si–O–B(Ti)–O Xerogels, Eur. J. Inorg. Chem., 2011, 879.

    Google Scholar 

  20. B. Yan, Q.-M. Wang, Two luminescent molecular hybrids composed of bridged Eu(iii)-ß-Diketone Chelates covalently trapped in silica and titanate gels, Cryst. Growth Des., 2008, 8, 1484.

    Article  CAS  Google Scholar 

  21. L. Guo, B. Yan, New luminescent lanthanide centered Si–O–Ti organic–inorganic hybrid material using sulfoxide linkage, Inorg. Chem. Commun., 2010, 13, 358.

    Article  CAS  Google Scholar 

  22. K. Binnemans, Lanthanide-based luminescent hybrid materials, Chem. Rev., 2009, 109, 4283.

    Article  CAS  Google Scholar 

  23. M. Gratzel, Photoelectrochemical cells, Nature, 2001, 414, 338.

    Article  CAS  Google Scholar 

  24. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells, J. Am. Chem. Soc., 2005, 127, 808.

    Article  CAS  Google Scholar 

  25. M. H. Bartl, S. W. Boettcher, K. L. Frindell, G. D. Stucky, 3-D molecular assembly of function in titania-based composite material systems, Acc. Chem. Res., 2005, 38, 263.

    Article  CAS  Google Scholar 

  26. W. K. Anderson, D. Bhattacharjee, D. M. Houston, Design, synthesis, antineoplastic activity, and chemical properities of bis(carbamate) derivatives of 4,5-bis(hydroxymethyl)imidazole, J. Med. Chem., 1989, 32, 119.

    Article  CAS  Google Scholar 

  27. P. Liu, H.-R. Li, Y.-G. Wang, Europium complexes immobilization on titania via chemical modification of titanium alkoxide, J. Mater. Chem., 2008, 18, 737.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianming Wang.

Additional information

† Electronic supplementary information (ESI) available: Fluorescence spectra of the sensing material. See DOI: 10.1039/c2pp05380b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Wang, Q., Huo, S. et al. Luminescent terbium(iii) complex-based titania sensing material for fluoride and its photocatalytic properties. Photochem Photobiol Sci 11, 738–743 (2012). https://doi.org/10.1039/c2pp05380b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05380b

Navigation