Skip to main content
Log in

Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photophysical and photochemical properties of a series of tetra- and octaglycosylated zinc phthalocyanines (ZnPcs) substituted with glucose and galactose moieties have been reported. Spectral properties of these phthalocyanines are compared in DMSO. Absorption spectra of the non-peripherally tetra-substituted ZnPcs 2 showed a significant red shift in their Q-band maxima as compared to the peripherally substituted analog 1. All the complexes gave high triplet quantum yields ranging from 0.68 to 0.88, whereas triplet lifetimes were in the range of 100–430 µs in argon-saturated solutions. The octagalactosylated ZnPc 3b showed the highest triplet quantum yield and singlet oxygen quantum yield of 0.88 and 0.69, respectively. The fluorescence quantum yields and lifetimes of all the compounds under investigation were within the range of zinc phthalocyanine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ben-Hur and W. S. Chan, Photobiology of Phthalocyanines: Phthalocyanines in Photobiology and their Medical Applications, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, 2003, ch. 1–30, vol. 19.

    Google Scholar 

  2. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hassan, Imaging and photodynamic therapy: mechanisms, monitoring and optimization, Chem. Rev., 2010, 110, 2795–2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  PubMed  Google Scholar 

  4. C. M. Allen, W. M. Sharman, J. E. Van Lier, Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 2001, 5, 161–169

    Article  CAS  Google Scholar 

  5. A. C. Tedesco, J. C. G. Rotta, C. N. Lunardi, Synthesis, photophysical and photochemical aspects of phthalocyanines for photodynamic therapy, Curr. Org. Chem., 2003, 7, 187–196.

    Article  CAS  Google Scholar 

  6. T. Nyokong and E. Antunes, in The Handbook of Porphyrin Science, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, World Scientific, New York, Singapore, 2010, ch. 34, vol. 7, pp. 247–349..

  7. J.-D. Huang, P.-C. Lo, Y.-M. Chen, J. C. Lai, W.-P. Fong, D. K. P. Ng, J. Inorg. Biochem., 2006, 100, 946–951

    Article  CAS  PubMed  Google Scholar 

  8. N. Mesilela, T. Nyokong, The synthesis and photophysical properties of novel cationic tetra pyridiloxy substituted aluminium, silicon and titanium phthalocyanines in water, J. Lumin., 2010, 130, 1787–1793.

    Article  CAS  Google Scholar 

  9. A. Erdogmus, M. Durmus, A. L. Ugur, O. Avciata, L. Avciata, T. Nyokong, Synthesis, photophysics, photochemistry and fluorescence quenching studies on highly soluble substituted oxo-titanium(iv) phthalocyanine complexes, Synth. Met., 2010, 160, 1868–1876.

    Article  CAS  Google Scholar 

  10. N. Nishiyama, W.-D. Jang, K. Kataoka, Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery, New J. Chem., 2007, 31, 1074–1082.

    Article  CAS  Google Scholar 

  11. J.-P. Taquet, C. Frochot, V. Manneville, M. Barberi-Heyob, Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy, Curr. Med. Chem., 2007, 14, 1673–1687.

    Article  CAS  PubMed  Google Scholar 

  12. O. Warburg, On the origin of cancer cells, Science, 1956, 123(3191), 309–314.

    Article  CAS  PubMed  Google Scholar 

  13. I. Laville, S. Pigaglio, J.-C. Blais, F. Doz, B. Loock, P. Maillard, D. S. Grierson, J. Blais, J. Med. Chem., 2006, 49, 2558

    Article  CAS  PubMed  Google Scholar 

  14. M. Obata, S. Hirohara, K. Sharyo, H. Alitomo, K. Kajiwara, S.-I. Ogata, M. Tanihara, C. Ohtsuki, S. Yano, Sugar-dependent photodynamic effect of glycoconjugated porphyrins: a study on photocytotoxicity, photophysical properties and binding behavior to bovine serum albumin (BSA), Biochim. Biophys. Acta, Gen. Subj., 2007, 1770(8), 1204–1211.

    Article  CAS  Google Scholar 

  15. S. K. Pandey, X. Zheng, J. Morgan, J. R. Missert, T.-H. Liu, M. Shibata, D. A. Bellnier, A. R. Oseroff, B. W. Henderson, T. J. Dougherty, R. K. Pandey, Purpurinimide carbohydrate conjugates: effect of the position of the carbohydrate moiety in photosensitizing efficacy, Mol. Pharmaceutics, 2007, 4, 448–464.

    Article  CAS  Google Scholar 

  16. M. Zhang, Z. Zhang, D. Blessington, H. Li, T. M. Busch, V. Madrak, J. Miles, B. Chance, J. D. Glickson, G. Zheng, Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters, Bioconjugate Chem., 2003, 14, 709–714.

    Article  CAS  Google Scholar 

  17. Y.-Y. He, J.-Y. An, L.-J. Jiang, Glycoconjugated hypocrellin: synthesis of [(ß-D-glucosyl)ethylthiyl]hypocrellins and photosensitized generation of singlet oxygen, Biochim. Biophys. Acta, Gen. Subj., 1999, 1472, 232–239.

    Article  CAS  Google Scholar 

  18. M. Philippe, J.-C. Guerquin-Kern, M. Momenteau, Glycoconjugated tetrapyrrolic macrocycles, J. Am. Chem. Soc., 1989, 111, 9125–9127.

    Article  Google Scholar 

  19. X. Alvarez-Mico, M. J. F. Calvete, M. Hanack, T. Ziegler, The first example of anomeric glycoconjugation to phthalocyanines, Tetrahedron Lett., 2006, 47, 3283–3286.

    Article  CAS  Google Scholar 

  20. J. T. F. Lau, P.-C. Lo, Y.-M. Tsang, W. P. Fong, D. K. P. Ng, Unsymmetrical ß-cyclodextrin-conjugated silicon(iv) phthalocyanines as highly potent photosensitisers for photodynamic therapy, Chem. Commun., 2011, 47, 9657–9659

    Article  CAS  Google Scholar 

  21. J. T. F. Lau, P.-C. Lo, W. P. Fong, D. K. P. Ng, Preparation and photodynamic activities of silicon(iv) phthalocyanines substituted with permethylated ß-cyclodextrins, Chem.–Eur. J., 2011, 17, 7569–7577.

    Article  CAS  PubMed  Google Scholar 

  22. J.-Y. Liu, P.-C. Lo, W.-P. Fong, D. K. P. Ng, Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc(ii) phthalocyanines, Org. Biomol. Chem., 2009, 7, 1583–1591

    Article  CAS  PubMed  Google Scholar 

  23. A. R. M. Soares, J. P. C. Tome, M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro, T. Torres, Synthesis of water-soluble phthalocyanines bearing four or eightd-galactose units, Carbohydr. Res., 2009, 344, 507–510.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zorlu, F. Dumoulin, D. Bouchu, V. Ahsen, D. Lafont, Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitizers, Tetrahedron Lett., 2010, 51, 6615–6618.

    Article  CAS  Google Scholar 

  25. A. Aggarwal, S. Singh, Y. Zhang, M. Anthes, D. Samaroo, R. Gao, C. M. Drain, Synthesis and photophysics of an octathioglycosylated zinc(ii) phthalocyanine, Tetrahedron Lett., 2011, 52, 5456–5459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. X. Alvarez-Mico, M. J. F. Calvete, M. Hanack, T. Ziegler, Expeditious synthesis of glycosylated phthalocyanines, Synthesis, 2007, 2186–2192

    Google Scholar 

  27. Z. Iqbal, A. Lyubimtsev, M. Hanack, T. Ziegler, Synthesis and characterization of 1,8(11),15(18),22(25)-tetraglycosylated zinc(ii) phthalocyanines, J. Porphyrins Phthalocyanines, 2010, 14, 494–498.

    Article  CAS  Google Scholar 

  28. Z. Iqbal, M. Hanack, T. Ziegler, Synthesis of an octasubstituted galactose zinc(ii) phthalocyanine, Tetrahedron Lett., 2009, 50, 873–875

    Article  CAS  Google Scholar 

  29. Z. Iqbal, A. Lyubimtsev, T. Herrmann, M. Hanack, T. Ziegler, Synthesis of octaglycosylated zinc(ii) phthalocyanines, Synthesis, 2010, 18, 3097–3104.

    Google Scholar 

  30. T. Nyokong, in Functional Phthalocyanine Molecular Materials, Structure and Bonding, ed. J. Jiang, Springer, New York, 2010, vol. 135, pp. 45–88.

  31. A. B. Anderson, T. L. Gorden, M. E. Kenney, Electronic and redox properties of stacked-ring silicon phthalocyanines from molecular orbital theory, J. Am. Chem. Soc., 1985, 107, 192–195.

    Article  CAS  Google Scholar 

  32. M. G. Debacker, O. Deleplanque, B. V. Vlierberge, F. X. Sauvage, A laser photolysis study of triplet lifetimes and of triplet–triplet annihilation reactions of phthalocyanines in DMSO solutions, Laser Chem., 1988, 8, 1–11.

    Article  CAS  Google Scholar 

  33. J. Chen, S. Li, F. Gong, Z. Yang, S. Wang, H. Xu, Y. Li, J. S. Ma, G. Yang, Photophysics and triplet–triplet annihilation analysis for axially substituted gallium phthalocyanine doped in solid matrix, J. Phys. Chem. C, 2009, 113, 11943–11951.

    Article  CAS  Google Scholar 

  34. M. G. Debacker, O. Deleplanque, B. Van Vlierberge, F. X. Sauvage, A laser photolysis study of triplet lifetimes and of triplet–triplet annihilation reactions of phthalocyanins DMSO solutions, Laser Chem., 1988, 8, 1–11.

    Article  CAS  Google Scholar 

  35. V. V. Sapunov, Quenching of excited complexes by Fe-octaethylporphin in triplet–triplet annihilation of Mg-phthalocyanine in liquid solutions, Opt. Spectrosc., 2001, 91, 684–689.

    Article  CAS  Google Scholar 

  36. F. Wilkinson, A. A. Abdel-Shafi, Mechanism of quenching of triplet states by molecular oxygen?:?biphenyl derivatives in different solvents, J. Phys. Chem. A, 1999, 103, 5425–5435.

    Article  CAS  Google Scholar 

  37. C. Franco, J. Olmsted, Photochemical determination of the solubility of oxygen in various media, Talanta, 1990, 37, 905–909.

    Article  CAS  PubMed  Google Scholar 

  38. J. R. Lakowicz, in Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 2nd edn, 1999.

    Book  Google Scholar 

  39. S. Fery-Forgues, D. Lavabre, Are fluorescence quantum yields so tricky to measure? a demonstration using familiar stationery products, J. Chem. Educ., 1999, 76(9), 1260–1264.

    Article  CAS  Google Scholar 

  40. A. Ogunsipe, J. Y. Chen, T. Nyokong, Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives-effects of substituents and solvents, New J. Chem., 2004, 28(7), 822–827.

    Article  CAS  Google Scholar 

  41. P. Kubat, J. Mosinger, Photophysical properties of metal complexes of meso-tetrakis(4-sulfonatophenyl)porphyrin, J. Photochem. Photobiol., A, 1996, 96(1–3), 93–97.

    Article  CAS  Google Scholar 

  42. N. Kuznetsova, N. Gretsova, E. Kalmykova, E. Makarova, S. Dashkevich, V. Negrimovskii, O. Kaliya, E. Lukyanets, Relationship between the photochemical properties and structure of porphyrins and related compounds, Russ. J. Gen. Chem., 2000, 70(1), 133–140.

    CAS  Google Scholar 

  43. W. Spiller, H. Kliesch, D. Worhle, S. Hackbarth, B. Roder, G. Schnurpfeil, Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, J. Porphyrins Phthalocyanines, 1998, 2, 145–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, Z., Masilela, N., Nyokong, T. et al. Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Photochem Photobiol Sci 11, 679–686 (2012). https://doi.org/10.1039/c2pp05348a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05348a

Navigation