Skip to main content
Log in

Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Following cellular delivery, most drugs must escape endosomes and lysosomes and reach the cytosol to be effective. This is particularly significant for nanoparticles, which can carry a large drug payload, but typically accumulate in endosomes and lysosomes. One attractive solution is to use light-triggered release, which can provide efficient endolysosomal membrane disruption and spatiotemporal control of cytosolic release. Here, we demonstrate the cytosolic release of cargo loaded into low density lipoprotein (LDL) nanoparticles using a photochemical internalization (PCI) approach. Three types of cargo-loaded LDL nanoparticles (CLLNPs) were generated by loading fluorescent dyes via (1) intercalation in the phospholipid monolayer exterior (surface loading), (2) conjugation to the amino acids of apoB-100 protein (protein loading) or (3) reconstitution into the hydrophobic core of LDL (core loading). Fluorescence imaging demonstrated the cellular uptake of CLLNPs was mediated by the LDL receptor and resulted in CLLNPs accumulation in endosomes. When cells were co-incubated with CLLNPs and AlPcS2a (a PCI agent), laser irradiation induced efficient cytosolic release of the surface-loaded and protein-labeled cargo, whereas the core-loaded hydrophobic dye could not readily be released. Thus, PCI is a useful cytosolic release method for CLLNPs, although the loading method must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Firestone, Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells, Bioconjugate Chem., 1994, 5, 105–113.

    Article  CAS  Google Scholar 

  2. B. Lundberg, Preparation of drug-low density lipoprotein complexes for delivery of antitumoral drugs via the low density lipoprotein pathway, Cancer Res., 1987, 47, 4105–4108.

    CAS  PubMed  Google Scholar 

  3. S. Vitols, K. Soderberg-Reid, M. Masquelier, B. Sjostrom and C. Peterson, Low density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug-lipoprotein complex, Br. J. Cancer, 1990, 62, 724–729.

    Article  CAS  Google Scholar 

  4. G. Zheng, J. Chen, H. Li and J. D. Glickson, Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 17757–17762.

    Article  CAS  Google Scholar 

  5. J. Chen, I. R. Corbin, H. Li, W. Cao, J. D. Glickson and G. Zheng, Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo, J. Am.Chem. Soc., 2007, 129, 5798–5799.

    Article  CAS  Google Scholar 

  6. I. R. Corbin and G. Zheng, Mimicking nature’s nanocarrier: synthetic low-density lipoprotein-like nanoparticles for cancer-drug delivery, Nanomedicine, 2007, 2, 375–380.

    Article  CAS  Google Scholar 

  7. J. F. Lovell, H. Jin, K. K. Ng and G. Zheng, Programmed nanoparticle aggregation using molecular beacons, Angew. Chem., Int. Ed., 2010, 49, 7917–7919.

    Article  CAS  Google Scholar 

  8. M. S. Brown and J. L. Goldstein, Receptor-mediated endocytosis: insights from the lipoprotein receptor system, Proc. Natl. Acad. Sci. U. S. A., 1979, 76, 3330–3337.

    Article  CAS  Google Scholar 

  9. S. Vitols, Uptake of low-density lipoprotein bymalignant cells–possible therapeutic applications, Cancer Cells, 1991, 3, 488–495.

    CAS  PubMed  Google Scholar 

  10. J. L. Goldstein and M. S. Brown, The LDL receptor and the regulation of cellular cholesterol metabolism, J. Cell Sci. Suppl., 1985, 3, 131–137.

    Article  CAS  Google Scholar 

  11. N. Andre, D. Braguer, G. Brasseur, A. Goncalves, D. Lemesle-Meunier, S. Guise, M. A. Jordan and C. Briand, Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells’, Cancer Res., 2000, 60, 5349–5353.

    CAS  PubMed  Google Scholar 

  12. B. Lebleu, Delivering information-rich drugs–prospects and challenges, Trends Biotechnol., 1996, 14, 109–110.

    Article  CAS  Google Scholar 

  13. K. Berg, P.K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, O. Fodstad, S. Kjolsrud, H. Anholt, G. H. Rodal, S. K. Rodal and A. Hogset, Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183.

    CAS  Google Scholar 

  14. A. Dietze, P. K. Selbo, L. Prasmickaite, A. Weyergang, A. Bonsted, B. Engesaeter, A. Hogset and K. Berg, Photochemical internalization (PCI): a new modality for light activation of endocytosed therapeuticals, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 521–536.

    Article  CAS  Google Scholar 

  15. K. Berg, M. Folini, L. Prasmickaite, P. K. Selbo, A. Bonsted, B. O. Engesaeter, N. Zaffaroni, A. Weyergang, A. Dietze, G. M. Maelandsmo, E. Wagner, O. J. Norum and A. Hogset, Photochemical internalization: a new tool for drug delivery, Curr. Pharm. Biotechnol., 2007, 8, 362–372.

    Article  CAS  Google Scholar 

  16. A. Dietze, A. Bonsted, A. Hogset and K. Berg, Photochemical internalization enhances the cytotoxic effect of the protein toxin gelonin and transgene expression in sarcoma cells, Photochem. Photobiol., 2003, 78, 283–289.

    Article  CAS  Google Scholar 

  17. A. Dietze, B. Engesaeter and K. Berg, Transgene delivery and gelonin cytotoxicity enhanced by photochemical internalization in fibroblastlike synoviocytes (FLS) fromrheumatoid arthritis patients, Photochem. Photobiol. Sci., 2005, 4, 341–347.

    Article  CAS  Google Scholar 

  18. M. Folini, K. Berg, E. Millo, R. Villa, L. Prasmickaite, M. G. Daidone, U. Benatti and N. Zaffaroni, Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase, Cancer Res., 2003, 63, 3490–3494.

    CAS  PubMed  Google Scholar 

  19. O. J. Norum, J. V. Gaustad, E. Angell-Petersen, E. K. Rofstad, Q. Peng, K. E. Giercksky and K. Berg, Photochemical internalization of bleomycin is superior to photodynamic therapy due to the therapeutic effect in the tumor periphery, Photochem. Photobiol., 2009, 85, 740–749.

    Article  CAS  Google Scholar 

  20. S. Oliveira, A. Hogset, G. Storm and R. M. Schiffelers, Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo, Curr. Pharm. Des., 2008, 14, 3686–3697.

    Article  CAS  Google Scholar 

  21. P. K. Selbo, A. Weyergang, A. Høgset, O. J. Norum, M. B. Berstad, M. Vikdal and K. Berg, Photochemical internalization provides timeand space-controlled endolysosomal escape of therapeutic molecules, J. Controlled Release., 2010, 148, 2–12.

    Article  CAS  Google Scholar 

  22. P. S. Lai, P. J. Lou, C. L. Peng, C. L. Pai, W. N. Yen, M. Y. Huang, T. H. Young and M. J. Shieh, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, J. Controlled Release, 2007, 122, 39–46.

    Article  CAS  Google Scholar 

  23. M. M. Fretz, A. Hogset, G. A. Koning, W. Jiskoot and G. Storm, Cytosolic delivery of liposomally targeted proteins induced by photochemical internalization, Pharm. Res., 2007, 24, 2040–2047.

    Article  CAS  Google Scholar 

  24. K. Raemdonck, B. Naeye, A. Hogset, J. Demeester and S. C. De Smedt, Prolonged gene silencing by combining siRNA nanogels and photochemical internalization, J. Controlled Release, 2010, 145, 281–288.

    Article  CAS  Google Scholar 

  25. R. J. Havel, H. A. Eder and J. H. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum, J. Clin. Invest., 1955, 34, 1345–1353.

    Article  CAS  Google Scholar 

  26. M. Krieger, L. C. Smith, R. G. Anderson, J. L. Goldstein, Y. J. Kao, H. J. Pownall, A. M. Gotto Jr. and M. S. Brown, Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells, J. Supramol. Struct., 1979, 10, 467.

    Article  CAS  Google Scholar 

  27. H. Li, Z. Zhang, D. Blessington, D. S. Nelson, R. Zhou, S. Lund-Katz, B. Chance, J. D. Glickson and G. Zheng, Carbocyanine labeled LDL for optical imaging of tumors, Acad. Radiol., 2004, 11, 669–677.

    Article  Google Scholar 

  28. S. Febvay, D. M. Marini, A. M. Belcher and D. E. Clapham, Targeted cytosolic delivery of cell-impermeable compounds by nanoparticlemediated, light-triggered endosome disruption, Nano Lett., 2010, 10, 2211–2219.

    Article  CAS  Google Scholar 

  29. M. Nikanjam, E. A. Blakely, K. A. Bjornstad, X. Shu, T. F. Budinger and T. M. Forte, Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastomamultiforme, Int. J. Pharm., 2007, 328, 86–94.

    Article  CAS  Google Scholar 

  30. C. Wolfrum, S. Shi, K. N. Jayaprakash, M. Jayaraman, G. Wang, R. K. Pandey, K. G. Rajeev, T. Nakayama, K. Charrise, E. M. Ndungo, T. Zimmermann, V. Koteliansky, M. Manoharan and M. Stoffel, Mechanisms and optimization of in vivo delivery of lipophilic siRNAs, Nat. Biotechnol., 2007, 25, 1149–1157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Lovell, J.F., Chen, J. et al. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization. Photochem Photobiol Sci 10, 810–816 (2011). https://doi.org/10.1039/c0pp00350f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00350f

Navigation