Skip to main content

Advertisement

Log in

Combination approaches to potentiate immune response after photodynamic therapy for cancer

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not advanced to a mainstream cancer treatment. Although it has been shown to be an efficient way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. This review will cover these combination approaches using immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen-associated molecular patterns, cytokines growth factors, and approaches that target regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hamblin and P. Mroz, Advances in photodynamic therapy: basic, translational and clinical, Artech House, Norwood, MA, 2008.

    Google Scholar 

  2. A. F. Cruess, G. Zlateva, A. M. Pleil and B. Wirostko, Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties, Acta Ophthalmol., 2009, 87, 118–132.

    Article  CAS  PubMed  Google Scholar 

  3. T. Dai, Y. Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections-State of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  4. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    CAS  PubMed  Google Scholar 

  5. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  6. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  7. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part three -photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther., 2005, 2, 91–106.

    Article  CAS  Google Scholar 

  8. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one–photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  9. M. F. Zuluaga and N. Lange, Combination of photodynamic therapy with anti-cancer agents, Curr. Med. Chem., 2008, 15, 1655–1673.

    Article  CAS  PubMed  Google Scholar 

  10. C. J. Gomer, S. W. Ryter, A. Ferrario, N. Rucker, S. Wong and A. M. Fisher, Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins, Cancer Res., 1996, 56, 2355–2360.

    CAS  PubMed  Google Scholar 

  11. A. D. Garg, D. Nowis, J. Golab and P. Agostinis, Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity, Apoptosis, 2010, 15, 1050–1071.

    Article  CAS  PubMed  Google Scholar 

  12. M. Kwitniewski, A. Juzeniene, R. Glosnicka and J. Moan, Immunotherapy: a way to improve the therapeutic outcome of photodynamic therapy?, Photochem. Photobiol. Sci., 2008, 7, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  13. T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami and T. Fujinaga, Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro, Biomaterials, 1997, 18, 947–951.

    Article  CAS  PubMed  Google Scholar 

  14. H. O. Pae, W. G. Seo, N. Y. Kim, G. S. Oh, G. E. Kim, Y. H. Kim, H. J. Kwak, Y. G. Yun, C. D. Jun and H. T. Chung, Induction of granulocytic differentiation in acute promyelocytic leukemia cells (HL-60) by watersoluble chitosan oligomer, Leuk. Res., 2001, 25, 339–346.

    Article  CAS  PubMed  Google Scholar 

  15. M.-S. Kim, M.-J. Sung, S.-B. Seo, S.-J. Yoo, W.-K. Lim and H.-M. Kim, Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta. peptide and interleukin-1 beta, Neurosci. Lett., 2002, 321, 105–109.

    Article  CAS  PubMed  Google Scholar 

  16. W. R. Chen, M. Korbelik, K. E. Bartels, H. Liu, J. Sun and R. E. Nordquist, Enhancement of laser cancer treatment by a chitosanderived immunoadjuvant, Photochem. Photobiol., 2005, 81, 190–195.

    Article  CAS  PubMed  Google Scholar 

  17. J. M. Yuhas, N. H. Pazmino and E. Wagner, Development of concomitant immunity in mice bearing the weakly immunogenic line 1 lung carcinoma, Cancer Res., 1975, 35, 237–241.

    CAS  PubMed  Google Scholar 

  18. W. T. Bradner, D. A. Clarke and C. C. Stock, Stimulation of host defense against experimental cancer. I. Zymosan and sarcoma 180 in mice, Cancer Res., 1958, 18, 347–351.

    CAS  PubMed  Google Scholar 

  19. P. R. Taylor, G. D. Brown, D. M. Reid, J. A. Willment, L. Martinez-Pomares, S. Gordon and S. Y. Wong, The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages, J.Immunol., 2002, 169, 3876–3882.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Y. Maeda and G. Chihara, The effects of neonatal thymectomy on the antitumour activity of lentinan, carboxymethylpachymaran and zymosan, and their effects on various immune responses, Int. J. Cancer, 1973, 11, 153–161.

    Article  CAS  PubMed  Google Scholar 

  21. A. Roeder, C. J. Kirschning, R. A. Rupec, M. Schaller, G. Weindl and H. C. Korting, Toll-like receptors as key mediators in innate antifungal immunity, Med. Mycol., 2004, 42, 485–498.

    Article  CAS  PubMed  Google Scholar 

  22. G. Krosl, M. Korbelik, J. Krosl and G. J. Dougherty, Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor, Cancer Res., 1996, 56, 3281–3286.

    CAS  PubMed  Google Scholar 

  23. M. Korbelik, J. Sun, I. Cecic and K. Serrano, Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors, Photochem. Photobiol. Sci., 2004, 3, 812–816.

    Article  CAS  PubMed  Google Scholar 

  24. U. Winters, S. Daayana, J. T. Lear, A. E. Tomlinson, E. Elkord, P. L. Stern and H. C. Kitchener, Clinical and immunologic results of a phase II trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia, Clin. Cancer Res., 2008, 14, 5292–5299.

    Article  CAS  PubMed  Google Scholar 

  25. W. T. Schaiff and P. R. Eisenberg, Direct induction of complement activation by pharmacologic activation of plasminogen, Coron. Artery Dis., 1997, 8, 9–18.

    Article  CAS  PubMed  Google Scholar 

  26. E. S. Abdel-Hady, P. Martin-Hirsch, M. Duggan-Keen, P. L. Stern, J. V. Moore, G. Corbitt, H. C. Kitchener and I. N. Hampson, Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy, Cancer Res., 2001, 61, 192–196.

    CAS  PubMed  Google Scholar 

  27. P. Hillemanns, M. Untch, C. Dannecker, R. Baumgartner, H. Stepp, J. Diebold, H. Weingandt, F. Prove and M. Korell, Photodynamic therapy of vulvar intraepithelial neoplasia using 5-aminolevulinic acid, Int. J. Cancer, 2000, 85, 649–653.

    Article  CAS  PubMed  Google Scholar 

  28. P. L. Martin-Hirsch, C. Whitehurst, C. H. Buckley, J. V. Moore and H. C. Kitchener, Photodynamic treatment for lower genital tract intraepithelial neoplasia, Lancet, 1998, 351, 1403.

    Article  CAS  PubMed  Google Scholar 

  29. A. A. Gaspari, Mechanism of action and other potential roles of an immune response modifier, Quadrant HealthCom, Plainview, NY, 2007.

    Google Scholar 

  30. M. A. Stanley, Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential, Clin. Exp. Dermatol., 2002, 27, 571–577.

    Article  CAS  PubMed  Google Scholar 

  31. J. Moan and S. Sommer, Uptake of the components of hematoporphyrin derivative by cells and tumours, Cancer Lett., 1983, 21, 167–174.

    Article  CAS  PubMed  Google Scholar 

  32. A. P. Castano and M. R. Hamblin, Enhancing photodynamic therapy of a metastatic mouse breast cancer by immune stimulation, in W. R. Chen, (Ed.), Biophotonics and Immune Responses, The International Society for Optical Engineering, Bellingham, WA, San Jose, 2006, pp. 608–703.

    Google Scholar 

  33. M. Urano, M. Taradi and S. K. Taradi, Enhancement of the thermal response of murine tumour and normal tissues by a streptococcal preparation, OK-432 (Picibanil), Int. J. Hyperthermia, 1991, 7, 113–123.

    Article  CAS  PubMed  Google Scholar 

  34. S. S. Okamoto and H. R. Shimizu, Studies on the anticancer and streptolysin-S′ forming ability of hemolytic streptococci, Jpn. J. Microbiol., 1976, 11.

    Google Scholar 

  35. T. Sato, Y. Midorikawa, T. Yamashita, A. Araki and F. Sendo, The neutrophil as an information transmitter in tumor inhibition by a streptococcal biological response modifier, OK-432, Cancer Immunol. Immunother., 1996, 43, 77–86.

    Article  CAS  PubMed  Google Scholar 

  36. T. M. Katano M, New approach to management of malignant ascites with a streptococcal preparation, OK-432. II. Intraperitoneal inflammatory cell-mediated tumor cell destruction, Surgery, 1983, 93.

    Google Scholar 

  37. M. Uehara, K. Sano, Z.-L. Wang, J. Sekine, H. Ikeda and T. Inokuchi, Enhancement of the photodynamic antitumor effect by streptococcal preparation OK-432 in the mouse carcinoma, Cancer Immunol. Immunother., 2000, 49, 401–409.

    Article  CAS  PubMed  Google Scholar 

  38. N. Yamamoto and V. R. Naraparaju, A defect in inducible betagalactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse, Immunology, 1996, 88, 604–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. W. J. Lau BH, C. L. Marsh, G. R. Barker, D. H. Koobs and R. R. Torrey, Superiority of intralesional immunotherapy with Corynebacterium parvum and Allium sativum in control of murine transitional cell carcinoma, J. Urol., 1986, 136, 701–705.

    Article  CAS  PubMed  Google Scholar 

  40. R. C. Myers, B. H. Lau, D. Y. Kunihira, R. R. Torrey, J. L. Woolley and J. Tosk, Modulation of hematoporphyrin derivative-sensitized phototherapy with corynebacterium parvum inmurine transitional cell carcinoma, Urology, 1989, 33, 230–235.

    Article  CAS  PubMed  Google Scholar 

  41. W.-C. R. Lau BH and J. Tosk, Tumor-specific T-lymphocyte cytotoxicity enhanced by low dose of C. parvum, J. Leukocyte Biol., 1987, 41, 407–411.

    Article  CAS  PubMed  Google Scholar 

  42. M. Korbelik, J. Sun and J. J. Posakony, Interaction Between Photodynamic Therapy andBCGImmunotherapyResponsible for theReduced Recurrence ofTreatedMouseTumors, Photochem. Photobiol., 2001, 73, 403–409.

    Article  CAS  PubMed  Google Scholar 

  43. H. Herr, D. Schwalb, Z. Zhang, P. Sogani, W. Fair, W. Whitmore and H. Oettgen, Intravesical bacillus Calmette-Guerin therapy prevents tumor progression and death from superficial bladder cancer: ten-year followup of a prospective randomized trial, J. Clin. Oncol., 1995, 13, 1404–1408.

    Article  CAS  PubMed  Google Scholar 

  44. J. L. Adams and C. J. Czuprynski, Ex vivo induction of TNF-alpha and IL-6 mRNA in bovine whole blood by Mycobacterium paratuberculosis and mycobacterial cell wall components, Microb. Pathog., 1995, 19, 19–29.

    Article  CAS  PubMed  Google Scholar 

  45. M. Korbelik and I. Cecic, Enhancement of tumour response to photodynamic therapy by adjuvantmycobacterium cell-wall treatment, J. Photochem. Photobiol., B, 1998, 44, 151–158.

    Article  CAS  Google Scholar 

  46. M. Alvaro, J. C. Nickel, D. Joseph, C. Janet and L. Ingrid Van Der, Immunotherapy of an Experimental Adenocarcinoma of the Prostate, J. Urol., 1995, 153, 1706–1710.

    Article  Google Scholar 

  47. N. Yamamoto, Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production, Mol. Immunol., 1996, 33, 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  48. B. Z. Ngwenya and N. Yamamoto, Activation of peritoneal macrophages by lysophosphatidylcholine, Biochim. Biophys.Acta, Gen. Subj., 1985, 839, 9–15.

    Article  CAS  Google Scholar 

  49. N. Yamamoto, J. K. Hoober and S. Yamamoto, Tumoricidal capacities of macrophages photodynamically activated with hematoporphyrin derivative, Photochem. Photobiol., 1992, 56, 245–250.

    Article  CAS  PubMed  Google Scholar 

  50. M. Korbelik, V. R. Naraparaju and N. Yamamoto, Macrophagedirected immunotherapy as adjuvant to photodynamic therapy of cancer, Br. J. Cancer, 1997, 75, 202–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Rollinghoff, A. Starzinski-Powitz, K. Pfizenmaier and H. Wagner, Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes, J. Exp. Med., 1977, 145, 455–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Glaser, Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice, J. Exp. Med., 1979, 149, 774–779.

    Article  CAS  PubMed  Google Scholar 

  53. M. J. Berendt and R. J. North, T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor, J. Exp. Med., 1980, 151, 69–80.

    Article  CAS  PubMed  Google Scholar 

  54. F. Ghiringhelli, N. Larmonier, E. Schmitt, A. Parcellier, D. Cathelin, C. Garrido, B. Chauffert, E. Solary, B. Bonnotte and F. Martin, CD4+CD25 +regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamidewhich allows immunotherapy of established tumors to be curative, Eur. J. Immunol., 2004, 34, 336–344.

    Article  CAS  PubMed  Google Scholar 

  55. M. Loeffler, J. A. Kruger and R. A. Reisfeld, Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase, Cancer Res., 2005, 65, 5027–5030.

    Article  CAS  PubMed  Google Scholar 

  56. M. E. Lutsiak, R. T. Semnani, R. De Pascalis, S. V. Kashmiri, J. Schlom and H. Sabzevari, Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood, 2005, 105, 2862–2868.

    Article  CAS  PubMed  Google Scholar 

  57. Y. Motoyoshi, K. Kaminoda, O. Saitoh, K. Hamasaki, K. Nakao, N. Ishii, Y. Nagayama and K. Eguchi, Different mechanisms for antitumor effects of low- and high-dose cyclophosphamide, Oncol. Rep., 2006, 16, 141–146.

    CAS  PubMed  Google Scholar 

  58. S. Brode, T. Raine, P. Zaccone and A. Cooke, Cyclophosphamideinduced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+regulatory T cells, J. Immunol., 2006, 177, 6603–6612.

    Article  CAS  PubMed  Google Scholar 

  59. J. Taieb, N. Chaput, N. Schartz, S. Roux, S. Novault, C. Menard, F. Ghiringhelli, M. Terme, A. F. Carpentier, G. Darrasse-Jeze, F. Lemonnier and L. Zitvogel, Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines, J. Immunol., 2006, 176, 2722–2729.

    Article  CAS  PubMed  Google Scholar 

  60. A. P. Castano, P. Mroz, M. X. Wu and M. R. Hamblin, Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5495–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. P. C. Kousis, B. W. Henderson, P. G. Maier and S. O. Gollnick, Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils, Cancer Res., 2007, 67, 10501–10510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. K. Kaushansky, Lineage-specific hematopoietic growth factors, N. Engl. J. Med., 2006, 354, 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  63. T. H. Price, G. S. Chatta and D. C. Dale, Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans, Blood, 1996, 88, 335–340.

    Article  CAS  PubMed  Google Scholar 

  64. W. J. de Vree, M. C. Essers, H. S. de Bruijn, W. M. Star, J. F. Koster and W. Sluiter, Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo, Cancer Res., 1996, 56, 2908–2911.

    PubMed  Google Scholar 

  65. H. F. Ismail, P. Fick, J. Zhang, R. G. Lynch and D. J. Berg, Depletion of neutrophils in IL-10(-/-)mice delays clearance of gastricHelicobacter infection and decreases the Th1 immune response to Helicobacter, J. Immunol., 2003, 170, 3782–3789.

    Article  CAS  PubMed  Google Scholar 

  66. J. Golab, G. Wilczynski, R. Zagozdzon, T. Stoklosa, A. Dabrowska, J. Rybczynska, M. Wasik, E. Machaj, T. Olda, K. Kozar, R. Kaminski, A. Giermasz, A. Czajka, W. Lasek, W. Feleszko and M. Jakobisiak, Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF, Br. J. Cancer, 2000, 82, 1485–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. D. Metcalf, Control of granulocytes and macrophages: molecular, cellular, and clinical aspects, Science, 1991, 254, 529–533.

    Article  CAS  PubMed  Google Scholar 

  68. B. Schuurman, G. Heuff, R. H. Beelen and S. Meyer, Enhanced killing capacity of human Kupffer cells after activation with human granulocyte/macrophage-colony-stimulating factor and interferon gamma, Cancer Immunol. Immunother., 1994, 39, 179–184.

    CAS  PubMed  Google Scholar 

  69. G. Dranoff, E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll and R. C. Mulligan, Vaccination with irradiated tumor cells engineered to secrete murine granulocytemacrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity, Proc. Natl. Acad. Sci.U. S. A., 1993, 90, 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. H. I. Levitsky, A. Lazenby, R. J. Hayashi and D. M. Pardoll, In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression, J. Exp. Med., 1994, 179, 1215–1224.

    Article  CAS  PubMed  Google Scholar 

  71. A. Jalili, M. Makowski, T. Switaj, D. Nowis, G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak and J. Golab, Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells, Clin. Cancer Res., 2004, 10, 4498–4508.

    Article  CAS  PubMed  Google Scholar 

  72. H. Saji, W. Song, K. Furumoto, H. Kato and E. G. Engleman, Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy, Clin. Cancer Res., 2006, 12, 2568–2574.

    Article  CAS  PubMed  Google Scholar 

  73. M. Korbelik and J. Sun, Cancer treatment by photodynamic therapy combined with adoptive immunotherapy using genetically altered natural killer cell line, Int. J. Cancer, 2001, 93, 269–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, T.G.S., Aziz, K., Waheed, A.A. et al. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem Photobiol Sci 10, 792–801 (2011). https://doi.org/10.1039/c0pp00326c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00326c

Navigation