Skip to main content
Log in

Exploring the effect of supramolecular structures of micelles and cyclodextrins on fluorescence emission of local anesthetics

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Benzocaine (ethyl 4-aminobenzoate, 4) and its derivatives ethyl 2-aminobenzoate, 2, and ethyl 3-aminobenzoate, 3, were found to form association complexes with supramolecular structures of micelles and cyclodextrins (CDs). The fluorescence emission of 2, 3 or 4 dissolved in the pseudo-micellar phase or included into a-, b-, or g-CD cavity increases dramatically with respect to that observed in only water. High percentages of organic solvents like dioxane, acetonitrile, DMSO in the aqueous solution lead to a similar effect. The stability constants of the complexes formed between these drugs and cyclodextrins have been determined. In neutral or acid medium, a 1: 1 stoichiometry for drug: CD complexes have been found, whereas in alkaline medium 1: 2 stoichiometry was also detected in some cases. Kinetic studies of both the nitrosation of the amine group and the alkaline hydrolysis of the ester function was employed to infer the conformation of the complexes as well as to evaluate their stability constants. Theoretical calculations to optimize the molecular structure of 2, 3 and 4 allow us to propose possible geometries of the complexes that are in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Matsuki, H. Satake, S. Kaneshina, P. R. Krishna and I. Ueda, Surface and colloid properties of local anesthetic solutions, Curr. Topics Coll. Interface Sci., 1997, 2, 69.

    CAS  Google Scholar 

  2. P. T. Frangopol and D. Mihailescu, Interactions of some local anesthetics and alcohols with membranes, Colloids Surf., B, 2001, 22, 3.

    Article  CAS  Google Scholar 

  3. W. C. Bowman and M. J. Rand, Textbook of Pharmacology, Blackwell Sci. Publs., University Press, Cambridge, 1990.

    Google Scholar 

  4. Local Anesthetics, Handbook of Experimental Pharmacology, ed. J. M. Ritchie and G. R. Strichartz, Springer-Verlag, Berlin, 1987, vol. 81, chap. 2.

    Google Scholar 

  5. J. Szejtli, Cyclodextrin complexed generic drugs are generally not-bioequivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow, J. Inclusion Phenom. Macrocyclic Chem., 2005, 52, 1.

    Article  CAS  Google Scholar 

  6. G. Savelli, R. Germani and L. Brinchi, in Reaction and Synthesis in Surfactant Systems, T. Texter, ed., Marcel Dekker, Inc.: New York, 2001, vol. 100, chap. 8.

  7. C. A. Bunton, F. Nome, F. H. Quina and L. S. Romsted, Ion binding and reactivity at charged aqueous interfaces, Acc. Chem. Res., 1991, 24, 357.

    Article  CAS  Google Scholar 

  8. P. Speicer, Biological and technological relevance of amphiphilic structures in apolar medium, in Reverse Micelles, P. L. Luise and B. E. Straub, ed., Plenum Press: New York, 1984, pp. 339–346.

    Chapter  Google Scholar 

  9. K. A. Connors, Measurement of cyclodextrin complex stability constants, in Comprehensive Supramolecular Chemistry, J. Szejtli, T. Osa, ed. Pergamon, 1996, vol. 3, pp. 205–241.

    Google Scholar 

  10. J. Szejtli, Cyclodextrin inclusion complexes, Cyclodextrin Technology, Kluwer Acad. Publishers, Netherlands, 1988, chap. 2.

    Chapter  Google Scholar 

  11. O. S. Tee, The stabilization of transition states by cyclodextrins and other catalysts., Adv. Phys. Org. Chem., 1994, 29, 1, and References therein.

    CAS  Google Scholar 

  12. W. Saenger, Cyclodextrin inclusion compounds in research and industry, Angew. Chem., Int. Ed. Engl., 1980, 19, 344.

    Article  Google Scholar 

  13. N. Takisawa, K. Shirahama and I. Tanaka, Interactions of amphiphilic drugs with a-, b-, and g-cyclodextrins, Colloid Polym. Sci., 1993, 271, 499.

    Article  CAS  Google Scholar 

  14. E. Iglesias, Inclusion complexation of novocaine by b-cyclodextrin in aqueous solutions, J. Org. Chem., 2006, 71, 4383.

    Article  CAS  Google Scholar 

  15. E. Iglesias, Investigation of physico-chemical behaviour of local anesthetics in aqueous SDS solutions, New J. Chem., 2008, 32, 517.

    Article  CAS  Google Scholar 

  16. I. Iglesias-García, I. Brandariz and E. Iglesias, Fluorescence study of tetracaine-cyclodextrin inclusion complexes, Supramol. Chem., 2010, 22, 228.

    Article  Google Scholar 

  17. B. Reija, W. Al-Soufi, M. Novo and J. Vázquez-Tato, Specific Interaction in the inclusion complexes of pyronines Y and B with bcyclodextrin, J. Phys. Chem. B, 2005, 109, 1364.

    Article  CAS  Google Scholar 

  18. R. Stewart, The Proton Applications to Organic Chemistry, Academic Press, Inc., 1985, chap. 3.

    Google Scholar 

  19. G. S. Cox and N. J. Turro, Methyl salicylate fluorescence as a probe of the geometry of complexation to cyclodextrins, Photochem. Photobiol., 1984, 40, 185.

    Article  CAS  Google Scholar 

  20. A. Domínguez, A. Fernández, N. González, E. Iglesias and L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques., J. Chem. Educ., 1997, 74, 1227.

    Article  Google Scholar 

  21. M. V. Rekharsky and Y. Inoue, Complexation thermodynamics of cyclodextrins, Chem. Rev., 1998, 98, 1875.

    Article  CAS  Google Scholar 

  22. A. Ueno and T. Osa, Host-guest photochemistry in solution, in Photochemistry in Organized and Constrained Media, V. Ramamurthy, ed., VCH Publishers, Inc., New York, 1991, chap. 16.

    Google Scholar 

  23. G. Krishnamoorthy and S. K. Dogra, TICT of 2-(4′-N,ndimethylamino phenyl)pyrido[3,4-d]imidazole in cyclodextrins: Effect of pH, J. Phys. Chem. A, 2000, 104, 2542.

    Article  CAS  Google Scholar 

  24. S. Monti, L. Flamigni, A. Martelli and P. Bortolus, Photochemisty of benzophenone-CD inclusion complexes., J. Phys. Chem., 1988, 92, 4447

    Article  CAS  Google Scholar 

  25. S. Monti, G. Köhler and G. Grabner, Photophysics and photochemistry of methylated phenols in b-cyclodextrin inclusion complexes, J. Phys. Chem., 1993, 97, 13011

    Article  CAS  Google Scholar 

  26. S. Monti, G. Marconi, F. Manoli, P. Bortolus, B. Mayer, G. Grabner, G. Köhler, W. Boszczyk and K. Rotkiewicz, Aspectroscopic and structural characterization of the inclusion complexes of p-dimethylaminobenzonitrile with cyclodextrins., Phys. Chem. Chem. Phys., 2003, 5, 1019

    Article  CAS  Google Scholar 

  27. S. Monti, P. Bartolus, F. Manoli, G. Marconi, G. Grabner, G. Köhler, B. Mayer, W. Boszczyk and K. Rotkiewicz, Microenvironmental effects in the excited state properties of p-dimethylaminobenzonitrile complexed to a- and b-cyclodextrin, Photochem. Photobiol. Sci., 2003, 2, 203.

    Article  CAS  Google Scholar 

  28. K. Takahashi, Organic reactions mediated by cyclodextrins, Chem. Rev., 1998, 98, 2013.

    Article  CAS  Google Scholar 

  29. E. Iglesias, Cyclodextrins as enzyme models in nitrosation and in acid- base hydrolysis reactions of alkyl nitrites., J. Am. Chem. Soc., 1998, 120, 13057.

    Article  CAS  Google Scholar 

  30. K. A. Connors, Binding Constants. The Measurements of Molecular Complex Stability, Wiley, New York, 1987, chap. 8.

    Google Scholar 

  31. L. M. A. Pinto, L. F. Fraceto, M. H. A. Santana, T. A. Pertinhez, S. Jr. Oyama and E. Paula, Physicochemical characterization of benzocaineb- cyclodextrin inclusion complexes, J. Pharm. Biomed. Anal., 2005, 39, 956.

    Article  CAS  Google Scholar 

  32. D. L. H. Williams, Nitrosation Reactions and the Chemistry of Nitric Oxide, Elsevier, 2004, chap. 1.

    Google Scholar 

  33. D. M. Davies and M. E. Deary, Stability of 1: 1 and 2: 1a-CD-pnitrophenyl acetate complexes and the effect of a-CD on acyl transfer to peroxide anion nucleophiles, J. Chem. Soc., Perkin Trans. 2, 1999, 1027

    Article  Google Scholar 

  34. E. Iglesias, Ester hydrolysis and enol nitrosation reactions of ethyl cyclohexanone-2-carboxylate inhibited byb-cyclodextrin., J. Org. Chem., 2000, 65, 6583.

    Article  CAS  Google Scholar 

  35. J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev., 1998, 98, 1743.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Iglesias.

Additional information

Electronic supplementary information (ESI) available: Absorption and emission spectra of compounds 2, 3, and 4 dissolved in water, micelles, and CDs; reaction spectra of 2, 3, and 4 in water

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, E. Exploring the effect of supramolecular structures of micelles and cyclodextrins on fluorescence emission of local anesthetics. Photochem Photobiol Sci 10, 531–542 (2011). https://doi.org/10.1039/c0pp00286k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00286k

Navigation