Skip to main content
Log in

Inclusion complex of Tramadol in β-cyclodextrin enhances fluorescence by preventing self-quenching

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence self-quenching occurs at high concentration. Inhibition of self-quenching by inclusion of fluorescence emitters inside the hydrophobic cavity of β-cyclodextrin (β-CD) has been addressed taking the example of the fluorescence behavior of Tramadol hydrochloride. Indeed complexation by β-CD enhanced fluorescence emission of Tramadol under conditions where self-quenching was operative. A quantitative account of self-quenching and its inhibition by β-CD was done through determination of complexation equilibrium by 1H NMR experiments and a detailed study of absorption and fluorescence properties. Tramadol and β-CD associate as a complex of 1:1 stoichiometry with a formation constant K11 = 260. Complexation of Tramadol by β-CD does not cause modification of its absorbance and fluorescence spectra. Fluorescence self-quenching of Tramadol above ∼ 1 mmol·L−1 was characterized by a Stern–Volmer constant K = 810 L·mol−1. Inhibition of self-quenching by formation of an inclusion complex was manifested by lower Stern–Volmer constants in the presence of β-CD. Such study required a correct account of Inner Filter Effects on fluorescence, which is mandatory in all physicochemical studies using fluorescence where concentrations are rather high.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frankewich, R.P., Thimmaiah, K.N., Hinze, W.L.: Evaluation of the relative effectiveness of different water-soluble β-cyclodextrin media to function as fluorescence enhancement agents. Anal. Chem. 63, 2924–2933 (1991)

    Article  CAS  Google Scholar 

  2. Bortolus, P., Monti, S.: Photochemistry in cyclodextrin cavities. Adv. Photochem. 21, 1–133 (1996)

    CAS  Google Scholar 

  3. Ramamurthy, V., Eaton, D.F.: Photochemistry and photophysics within cyclodextrin cavities. Acc. Chem. Res. 21, 300–306 (1988)

    Article  CAS  Google Scholar 

  4. Chen, J., Tang, B.Z.: Restricted intramolecular rotations: a mechanism for aggregation-induced emission. In: Qin, A., Tang, B.Z. Aggregation-Induced Emission, pp. 307–322. Wiley, Chichester (2014)

    Google Scholar 

  5. Hwang, H., Kim, H., Myong, S.: Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity. Proc. Natl Acad. Sci. USA 108, 7414–7418 (2011)

    Article  PubMed  Google Scholar 

  6. Peccati, F., Hernando, J., Blancafort, L., Solans-Monfort, X., Sodupe, M.: Disaggregation-induced fluorescence enhancement of NIAD-4 for the optical imaging of amyloid-β fibrils. Phys. Chem. Chem. Phys. 17, 19718–19725 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Xu, J.-L., Quan, Y., Li, Q.-Y., Lu, H., Wu, H., Yin, J., Wang, X.-J., Zhang, Q.: Significant emission enhancement of a bolaamphiphile with salicylaldehyde azine moiety induced by the formation of [2]pseudorotaxane with γ-cyclodextrin. RSC Adv. 5, 88176–88180 (2015)

    Article  CAS  Google Scholar 

  8. Deng, S.-L., Huang, P.-C., Lin, L.-Y., Yang, D.-J., Hong, J.-L.: Complex from ionic β-cyclodextrin polyrotaxane and sodium tetraphenylthiophenesulfonate: restricted molecular rotation and aggregation-enhanced emission. RSC Adv. 5, 19512–19519 (2015)

    Article  CAS  Google Scholar 

  9. Sbai, M., Lyazidi, S.A., Lerner, D.A., del Castillo, B., Martin, M.A.: Modified β-cyclodextrins as enhancers of fluorescence emission of carbazole alkaloid derivatives. Anal. Chim. Acta 303, 47–55 (1995)

    Article  CAS  Google Scholar 

  10. Sbai, M., Lyazidi, S.A., Lerner, D.A., del Castillo, B., Martin, M.A.: Stoichiometry and association constants of the inclusion complexes of ellipticine with modified β-cyclodextrin. Analyst 121, 1561–1564 (1996)

    Article  CAS  Google Scholar 

  11. Shuang, S.-M., Guo, S.-Y., Li, L., Cai, M.-Y., Pan, J.-H.: β-Cyclodextrin derivatives as fluorescence enhancers of the drug, hesperidin. Anal. Lett. 31, 1357–1366 (1998)

    Article  CAS  Google Scholar 

  12. Galian, R.E., Veglia, A.V.: Fluorescence quenching inhibition of substituted indoles by neutral and ionized cyclodextrins nanocavities. J. Photochem. Photobiol. A 187, 356–362 (2007)

    Article  CAS  Google Scholar 

  13. Oddy, F.E., Brovelli, S., Stone, M.T., Klotz, E.J.F., Cacialli, F., Anderson, H.L.: Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19, 2846–2852 (2009)

    Article  CAS  Google Scholar 

  14. Bracamonte, A.G., Veglia, A.V.: Cyclodextrins nanocavities effects on basic and acid fluorescence quenching of hydroxy-indoles. J. Photochem. Photobiol. A 261, 20–25 (2013)

    Article  CAS  Google Scholar 

  15. Vazzana, M., Andreani, T., Fangueiro, J., Faggio, C., Silva, C., Santini, A., Garcia, M.L., Silva, A.M., Souto, E.B.: Tramadol hydrochloride: pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed. Pharmacother. 70, 234–238 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Grond, S., Sablotzki, A.: Clinical pharmacology of tramadol. Clin. Pharmacokinet. 43, 879–923 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Bamigbade, T.A., Davidson, C., Langford, R.M., Stamford, J.A.: Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Brit. J. Anaesth. 79, 352–356 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Hennies, H.H., Friderichs, E., Schneider, J.: Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneim.-Forsch. 38, 877–880 (1988)

    CAS  Google Scholar 

  19. Reimann, W., Hennies, H.-H.: Inhibition of spinal noradrenaline uptake in rats by the centrally acting analgesic tramadol. Biochem. Pharmacol. 47, 2289–2293 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Bilensoy, E. (ed.): Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine, Current and Future Industrial Applications. Wiley, Hoboken (2011)

    Google Scholar 

  22. Stella, V.J., Rao, V.M., Zannou, E.A., Zia, V.: Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36, 3–16 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Duchêne, D., Bochot, A., Yu, S.-C., Pépin, C., Seiller, M.: Cyclodextrins and emulsions. Int. J. Pharm. 266, 85–90 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Yu, S.-C., Bochot, A., Le Bas, G., Chéron, M., Mahuteau, J., Grossiord, J.-L., Seiller, M., Duchêne, D.: Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple emulsions. Int. J. Pharm. 261, 1–8 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Anton Smith, A., Manavalan, R., Kannan, K., Rajendiran, N.: Spectral characteristics of tramadol in different solvents and β-cyclodextrin. Spectrochim. Acta A 74, 469–477 (2009)

    Article  CAS  Google Scholar 

  26. Box, K.J., Comer, J.E.A.: Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. Curr. Drug Metab. 9, 869–878 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Schneider, H.-J., Hacket, F., Rüdiger, V.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1785 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Smyj, R., Wang, X.-P., Han, F.: Tramadol hydrochloride. Profil. Drug Subst. Excip. Relat. Methodol. 38, 463–494 (2013)

    Article  CAS  Google Scholar 

  29. Wood, D.J., Hruska, F.E., Saenger, W.: 1H NMR study of the inclusion of aromatic molecules in α-cyclodextrin. J. Am. Chem. Soc. 99, 1735–1740 (1977)

    Article  CAS  Google Scholar 

  30. Salvatierra, D., Jaime, C., Virgili, A., Sánchez-Ferrando, F.: Determination of the inclusion geometry for the β-cyclodextrin/benzoic acid complex by NMR and molecular modeling. J. Org. Chem. 61, 9578–9581 (1996)

    Article  CAS  Google Scholar 

  31. Valeur, B., Berberan-Santos, M.N.: Molecular Fluorescence: Principles and Applications, 2nd edn., p. 69. Wiley-VCH, Weinheim (2012)

    Book  Google Scholar 

  32. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 55–56. Springer, New York (2006)

    Book  Google Scholar 

  33. MacDonald, B.C., Lvin, S.J., Patterson, H.: Correction of fluorescence inner filter effects and the partitioning of pyrene to dissolved organic carbon. Anal. Chim. Acta 338, 155–162 (1997)

    Article  CAS  Google Scholar 

  34. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 277–284. Springer, New York (2006)

    Book  Google Scholar 

  35. Arad-Yellin, R., Eaton, D.F.: Excited-state reactivity changes induced by complexation with cyclodextrins: Inclusion of 2,2-bis(α-naphthylmethyl)-1,3-dithiane into β- and γ-cyclodextrins. J. Phys. Chem. 87, 5051–5055 (1983)

    Article  CAS  Google Scholar 

  36. Valeur, B., Berberan-Santos, M.N.: Molecular Fluorescence: Principles and Applications, 2nd edn., pp. 213–261. Wiley, Weinheim (2012)

    Book  Google Scholar 

  37. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn., pp. 331–351. Springer, New York (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Chevalier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidane, S., Maiza, A., Bouleghlem, H. et al. Inclusion complex of Tramadol in β-cyclodextrin enhances fluorescence by preventing self-quenching. J Incl Phenom Macrocycl Chem 93, 253–264 (2019). https://doi.org/10.1007/s10847-018-0874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0874-1

Keywords

Navigation