Skip to main content

Advertisement

Log in

Light-powered molecular devices and machines

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

One century ago Giacomo Ciamician predicted that photochemistry would have had a wealth of useful applications, starting from the conversion of solar energy into fuels. Most of Ciamician’s predictions have not yet been achieved, but in the last decade outstanding progress concerning the interaction between light and molecules has led to the creation of artificial photochemical molecular devices and machines capable of using light as an energy supply (to sustain energy-expensive functions) or as an input signal (to be processed and/or stored). This paper illustrates (i) the principles of photochemical molecular devices for information processing, with a few examples of memories, logic functions, and encoding/decoding systems; (ii) the operational mechanisms of light-powered molecular machines, with some examples of rotary motors, shuttles, valves, and switchable boxes; and (iii) the recent progress made in the design and construction of the components of artificial photosynthetic systems. The use of photons to convert abundant low energy molecules into high energy valuable compounds, and to read, write, and erase smart molecular and supramolecular systems for information processing is likely to play a fundamental role for the progress of mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Ernst Angew. Chem., Int. Ed., 2003, 42, 4434–4439.

    Article  CAS  Google Scholar 

  2. E. O. Wilson, The Creation. An Appeal to Save Life on Earth, W. W. Norton & Company, Inc., New York, 2006.

    Google Scholar 

  3. G. Ciamician Science, 1912, 36, 385–394.

    Article  CAS  PubMed  Google Scholar 

  4. R. P. Feynman The Physics Teacher, 1969, 7, 313–320.

    Article  Google Scholar 

  5. R. P. Feynman Eng. Sci., 1960, 23, 22–36.

    Google Scholar 

  6. R. P. Feynman Saturday Rev., 1960, 43, 45–47.

    Google Scholar 

  7. J.-M. Lehn Angew. Chem., Int. Ed. Engl., 1988, 27, 89–112.

    Article  Google Scholar 

  8. Supramolecular Photochemistry, ed. V. Balzani, Reidel, Dordrecht, 1987.

    Google Scholar 

  9. V. Balzani, L. Moggi and F. Scandola, in Supramolecular Photochemistry, ed. V. Balzani, Reidel, Dordrecht, 1987, pp. 1–28.

  10. There is an abundant literature on this topic. For a guideline, see: V. Balzani, A. Credi and M. Venturi, Molecular Devices and Machines–Concepts and Perspective for the Nanoworld, Wiley-VCH, Weinheim, 2008.

    Book  Google Scholar 

  11. F. Pina, A. Roque, M. J. Melo, M. Maestri, L. Balladelli, V. Balzani Chem.–Eur. J., 1998, 4, 1184–1191.

    Article  CAS  Google Scholar 

  12. Fuzzy Logic in Chemistry, ed. D. H. Rouvray, Academic Press, London, 1997.

    Google Scholar 

  13. A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy J. Am. Chem. Soc., 1997, 119, 7891–7892.

    Article  Google Scholar 

  14. For recent reviews, see

  15. H. Tian, Q. C. Wang Chem. Soc. Rev., 2006, 35, 361–374.

    Article  CAS  PubMed  Google Scholar 

  16. K. Szacilowski Chem. Rev., 2008, 108, 3481–3548.

    Article  CAS  PubMed  Google Scholar 

  17. A. P. de Silva, T. P. Vance, M. E. S. West, G. D. Wright Org. Biomol. Chem., 2008, 6, 2468–2480.

    Article  PubMed  CAS  Google Scholar 

  18. J. Andréasson, U. Pischel Chem. Soc. Rev., 2010, 39, 174–188.

    Article  PubMed  Google Scholar 

  19. E. Katz, V. Privman Chem. Soc. Rev., 2010, 39, 1835–1857.

    Article  CAS  PubMed  Google Scholar 

  20. See, for example: J. Andréasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust J. Am. Chem. Soc., 2008, 130, 11122–11128.

    Article  PubMed  CAS  Google Scholar 

  21. S. Campagna, F Puntoriero, F. Nastasi, G. Bergamini, V. Balzani Top. Curr. Chem., 2007, 280, 117–214.

    Article  CAS  Google Scholar 

  22. P. Ceroni, G. Bergamini, V. Balzani Angew. Chem., Int. Ed., 2009, 48, 8516–8518.

    Article  CAS  Google Scholar 

  23. A. P. de Silva, M. R. James, B. O. F. McKinney, P. A. Pears, S. M. Weir Nat. Mater., 2006, 5, 787–789.

    Article  PubMed  CAS  Google Scholar 

  24. S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves, E. L. Dunphy, M. Tomasulo, F. M. Raymo, A. Credi, Chem.–Eur. J., 2009, 15, 178–185, and references therein.

    Article  CAS  PubMed  Google Scholar 

  25. A. P. De Silva, S. Uchiyama Nat. Nanotechnol., 2007, 2, 399–410.

    Article  PubMed  CAS  Google Scholar 

  26. D. C. Magri, G. J. Brown, G. D. McClean, A. P. de Silva J. Am. Chem. Soc., 2006, 128, 4950–4951.

    Article  CAS  PubMed  Google Scholar 

  27. Opportunities in Chemistry, National Academy of Sciences, National Academy Press, Washington, 1985.

  28. R. A. L. Jones, Soft Machines–Nanotechnology and Life, Oxford University Press, Oxford, 2005.

    Google Scholar 

  29. D. S. Goodsell, Bionanotechnology–Lessons from Nature, Wiley, Hoboken, 2004.

    Book  Google Scholar 

  30. For some recent reviews, see

  31. W. R. Browne, B. L. Feringa Nat. Nanotechnol., 2006, 1, 25–35.

    Article  CAS  PubMed  Google Scholar 

  32. E. R. Kay, D. A. Leigh, F. Zerbetto Angew. Chem., Int. Ed., 2007, 46, 72–191.

    Article  CAS  Google Scholar 

  33. B. Champin, P. Mobian, J.-P. Sauvage Chem. Soc. Rev., 2007, 36, 358–366.

    Article  CAS  PubMed  Google Scholar 

  34. S. Silvi, M. Venturi, A Credi J. Mater. Chem., 2009, 19, 2279–2294.

    Article  CAS  Google Scholar 

  35. J. F. Stoddart Chem. Soc. Rev., 2009, 38, 1802–1820.

    Article  CAS  PubMed  Google Scholar 

  36. V. Balzani, A. Credi, M. Venturi Chem. Soc. Rev., 2009, 38, 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  37. X. Ma, H. Tian Chem. Soc. Rev., 2010, 39, 70–80.

    Article  CAS  PubMed  Google Scholar 

  38. J. Barber Chem. Soc. Rev., 2009, 38, 185–196.

    Article  CAS  PubMed  Google Scholar 

  39. V. Balzani Photochem. Photobiol. Sci., 2003, 2, 459–476.

    Article  CAS  PubMed  Google Scholar 

  40. S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe J. Am. Chem. Soc., 1981, 103, 111–115.

    Article  CAS  Google Scholar 

  41. T. Muraoka, K. Kinbara, T. Aida Nature, 2006, 440, 512–515.

    Article  CAS  PubMed  Google Scholar 

  42. See, for example: E. M. Geertsema, S. J. van der Molen, M. Martens, B. L. Feringa Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 16919–16924, and references therein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. Harada, N. Koumura, B. L. Feringa J. Am. Chem. Soc., 1997, 119, 7256–7264.

    Article  CAS  Google Scholar 

  44. R. A. van Delden, N. Koumura, A Schoevaars, A. Meetsma, B. L. Feringa Org. Biomol. Chem., 2003, 1, 33–35.

    Article  PubMed  Google Scholar 

  45. For the first example of controlled shuttling, see: A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart Nature, 1994, 369, 133–137.

    Article  CAS  Google Scholar 

  46. M. C. Jiménez, C. Dietrich-Buchecker, J.-P. Sauvage Angew. Chem., Int. Ed., 2000, 39, 3284–3287.

    Article  Google Scholar 

  47. Y. Liu, A. H. Flood, P. A. Bonvallet, S. A. Vignon, B. H. Northrop, H.-R. Tseng, J. A. Jeppesen, T. Y. Huang, B. Brough, M. Ballaer, S. Magonov, S. D. Solares, W. A. Goddard III, C.-M. Ho, J. F. Stoddart J. Am. Chem. Soc., 2005, 127, 9745–9759.

    Article  CAS  PubMed  Google Scholar 

  48. S. Tsuda, Y. Aso, T. Kaneda Chem. Commun., 2006 3072–3074.

    Google Scholar 

  49. P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. Wenger Chem.–Eur. J., 2000, 6, 3558–3574.

    Article  CAS  PubMed  Google Scholar 

  50. V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi, A. H. Flood, J. F. Stoddart Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1178–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia, G. W. H. Wurpel Science, 2001, 291, 2124–2128.

    Article  CAS  PubMed  Google Scholar 

  52. M. R. Panman, P. Bodis, D. J. Shaw, B. H. Bakker, A. C. Newton, E. R. Kay, A. M. Brouwer, W. J. Buma, D. A. Leigh, S. Woutersen Science, 2010, 328, 1255–1258.

    Article  CAS  PubMed  Google Scholar 

  53. A. Credi, M. Venturi, V. Balzani ChemPhysChem, 2010 10.1002/cphc.201000520.

    Google Scholar 

  54. P. Raiteri, G. Bussi, C. S. Cucinotta, A. Credi, J. F. Stoddart, M. Parrinello Angew. Chem., Int. Ed., 2008, 47, 3536–3539.

    Article  CAS  Google Scholar 

  55. V. Balzani, A. Credi, M. Venturi ChemPhysChem, 2008, 9, 202–220.

    Article  CAS  PubMed  Google Scholar 

  56. R. Klajn, J. F. Stoddart, B. A. Grzybowski Chem. Soc. Rev., 2010, 39, 2203–2237.

    Article  CAS  PubMed  Google Scholar 

  57. A. Koçer, M. Walko, W. Meijberg, B. L. Feringa Science, 2005, 309, 755–758.

    Article  PubMed  CAS  Google Scholar 

  58. S. Angelos, E. Choi, F. Vögtle, L. De Cola, J. I. Zink J. Phys. Chem. C, 2007, 111, 6589–6592.

    Article  CAS  Google Scholar 

  59. D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink J. Am. Chem. Soc., 2009, 131, 1686–1688.

    Article  CAS  PubMed  Google Scholar 

  60. F. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini, F. Vögtle J. Am. Chem. Soc., 2007, 129, 10714–10719.

    Article  CAS  PubMed  Google Scholar 

  61. J. Berná, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi, F. Zerbetto Nat. Mater., 2005, 4, 704–710.

    Article  PubMed  CAS  Google Scholar 

  62. G. D. Bachand, S. B. Rivera, A. Carroll-Portillo, H. Hess, M. Bachand Small, 2006, 2, 381–385.

    Article  CAS  PubMed  Google Scholar 

  63. M. G. L. Van Den Heuvel, C. Dekker Science, 2007, 317, 333–336.

    Article  PubMed  CAS  Google Scholar 

  64. V. Balzani, A. Credi, M. Venturi ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  65. M. Aresta, A. Dibenedetto Dalton Trans., 2007 2975–2992.

    Google Scholar 

  66. A. J. Morris, G. J. Meyer, E. Fujita Acc. Chem. Res., 2009, 42, 1983–1994.

    Article  CAS  PubMed  Google Scholar 

  67. A. Listorti, J. Durrant, J. Barber Nat. Mater., 2009, 8, 929–930.

    Article  CAS  PubMed  Google Scholar 

  68. V. Balzani, L. Moggi, M. F. Manfrin, F. Bolletta, M. Gleria Science, 1975, 189, 852–856.

    Article  CAS  PubMed  Google Scholar 

  69. G. Kodis, Y. Terazono, P. A. Liddell, J. Andréasson, V. Garg, M. Hambourger, T. A. Moore, A. L. Moore, D. Gust J. Am. Chem. Soc., 2006, 128, 1818–1827.

    Article  CAS  PubMed  Google Scholar 

  70. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, T. J. Meyer Acc. Chem. Res., 2009, 42, 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  71. G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers Acc. Chem. Res., 2009, 42, 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  72. A. Magnuson, M. A. Anderlund, M. Johansson, O. P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styring, V. Sundström, L. Hammarström Acc. Chem. Res., 2009, 42, 1899–1909.

    Article  CAS  PubMed  Google Scholar 

  73. Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill Science, 2010, 328, 342–345.

    Article  CAS  PubMed  Google Scholar 

  74. M. H. V. Huynh, T. J. Meyer Chem. Rev., 2007, 107, 5004–5064.

    Article  CAS  PubMed  Google Scholar 

  75. H. B. Gray Nat. Chem., 2009, 1, 7.

    Article  CAS  PubMed  Google Scholar 

  76. S. K. Ritter Chem. Eng. News, 2010, 88, 27 26–28.

    Article  Google Scholar 

  77. N. Armaroli and V. Balzani, Energy for a Sustainable World, Wiley-VCH, Weinheim, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Balzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceroni, P., Credi, A., Venturi, M. et al. Light-powered molecular devices and machines. Photochem Photobiol Sci 9, 1561–1573 (2010). https://doi.org/10.1039/c0pp00233j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00233j

Navigation