Skip to main content
Log in

Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aiming at the rational development of genetically-encoded photosensitisers, the production of singlet oxygen has been assessed for a number of class-2 Green Fluorescent Protein (GFP) mutants by means of time-resolved near-infrared luminescence detection. The accessibility of molecular oxygen to the chromophore seems to play a major role in the ability of GFPs to photosensitise singlet oxygen and this can be modulated by introducing specific mutations such as replacement of His148 by a less bulky amino acid. GFPs are also good singlet oxygen quenchers, hence further developments in this area should also seek to eliminate those amino acids with the highest quenching ability, particularly those at the protein surface and in the vicinity of the chromophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Heim, D. C. Prasher, R. Y. Tsien, Wavelength mutations and posttranslational autoxidation of Green Fluorescent Protein, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 12501–12504.

    Article  CAS  Google Scholar 

  2. C. W. Cody, D. C. Prasher, W. M. Westler, F. G. Prendergast, W. W. Ward, Chemical-structure of the hexapeptide chromophore of the Aequorea Green-Fluorescent Protein, Biochemistry, 1993, 32, 1212–1218.

    Article  CAS  Google Scholar 

  3. D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, M. J. Cormier, Primary structure of the Aequorea-victoria Green-Fluorescent Protein, Gene, 1992, 111, 229–233.

    Article  CAS  Google Scholar 

  4. R. N. Day, M. W. Davidson, The fluorescent protein palette: tools for cellular imaging, Chem. Soc. Rev., 2009, 38, 2887–2921.

    Article  CAS  Google Scholar 

  5. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Review - The fluorescent toolbox for assessing protein location and function, Science, 2006, 312, 217–224.

    Article  CAS  Google Scholar 

  6. S. J. Remington, Fluorescent proteins: maturation, photochemistry and photophysics, Curr. Opin. Struct. Biol., 2006, 16, 714–721.

    Article  CAS  Google Scholar 

  7. R. Dixit, R. Cyr, Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy, Plant J., 2003, 36, 280–290.

    Article  CAS  Google Scholar 

  8. T. Surrey, M. B. Elowitz, P. E. Wolf, F. Yang, F. Nedelec, K. Shokat, S. Leibler, Chromophore-assisted light inactivation and self-organization of microtubules and motors, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 4293–4298.

    Article  CAS  Google Scholar 

  9. Z. Rajfur, P. Roy, C. Otey, L. Romer, K. Jacobson, Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins, Nat. Cell Biol., 2002, 4, 286–293.

    Article  CAS  Google Scholar 

  10. T. Tanabe, M. Oyamada, K. Fujita, P. Dai, H. Tanaka, T. Takamatsu, Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein, Nat. Methods, 2005, 2, 503–505.

    Article  CAS  Google Scholar 

  11. M. Grabenbauer, W. J. C. Geerts, J. Fernadez-Rodriguez, A. Hoenger, A. J. Koster, T. Nilsson, Correlative microscopy and electron tomography of GFP through photooxidation, Nat. Methods, 2005, 2, 857–862.

    Article  CAS  Google Scholar 

  12. L. Greenbaum, C. Rothmann, R. Lavie, Z. Malik, Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen, Biol. Chem., 2000, 381, 1251–1258.

    Article  CAS  Google Scholar 

  13. M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B. Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov, K. A. Lukyanov, A genetically encoded photosensitizer, Nat. Biotechnol., 2006, 24, 95–99.

    Article  CAS  Google Scholar 

  14. S. Pletnev, N. G. Gurskaya, N. V. Pletneva, K. A. Lukyanov, D. M. Chudakov, V. I. Martynov, V. O. Popov, M. V. Kovalchuk, A. Wlodawer, Z. Dauter, V. Pletnev, Structural Basis for Phototoxicity of the Genetically Encoded Photosensitizer KillerRed, J. Biol. Chem., 2009, 284, 32028–32039.

    Article  CAS  Google Scholar 

  15. C. S. Foote, Definition of Type-I and Type-II Photosensitized Oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  Google Scholar 

  16. E. O. Serebrovskaya, E. F. Edelweiss, O. A. Stremovskiy, K. A. Lukyanov, D. M. Chudakov, S. M. Deyev, Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 9221–9225.

    Article  CAS  Google Scholar 

  17. S. Nonell, S. E. Braslavsky, Time-resolved singlet oxygen detection, Methods Enzymol., 2000, 319, 37–49.

    Article  CAS  Google Scholar 

  18. A. Jimenez-Banzo, X. Ragas, P. Kapusta, S. Nonell, Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection, Photochem. Photobiol. Sci., 2008, 7, 1003–1010.

    Article  CAS  Google Scholar 

  19. R. Y. Tsien, The Green Fluorescent Protein, Annu. Rev. Biochem., 1998, 67, 509–544.

    Article  CAS  Google Scholar 

  20. A. Jimenez-Banzo, S. Nonell, J. Hofkens, C. Flors, Singlet oxygen photosensitization by EGFP and its chromophore HBDI, Biophys. J., 2008, 94, 168–172.

    Article  CAS  Google Scholar 

  21. S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati, A. Mozzarelli, Kinetics of acid-induced spectral changes in the GFPmut2 chromophore, J. Am. Chem. Soc., 2005, 127, 626–635.

    Article  CAS  Google Scholar 

  22. F. Wilkinson, W. P. Helman, A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    CAS  Google Scholar 

  23. R. M. Wachter, M. A. Elsliger, K. Kallio, G. T. Hanson, S. J. Remington, Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein, Structure, 1998, 6, 1267–1277.

    Article  CAS  Google Scholar 

  24. R. Bizzarri, R. Nifosi, S. Abbruzzetti, W. Rocchia, S. Guidi, D. Arosio, G. Garau, B. Campanini, E. Grandi, F. Ricci, C. Viappiani, F. Beltram, Green fluorescent protein ground states: The influence of a second protonation site near the chromophore, Biochemistry, 2007, 46, 5494–5504.

    Article  CAS  Google Scholar 

  25. R. Swaminathan, C. P. Hoang, A. S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J., 1997, 72, 1900–1907.

    Article  CAS  Google Scholar 

  26. B. Campanini, S. Bologna, F. Cannone, G. Chirico, A. Mozzarelli, S. Bettati, Unfolding of Green Fluorescent Protein mut2 in wet nanoporous silica gels, Protein Sci., 2005, 14, 1125–1133.

    Article  CAS  Google Scholar 

  27. R. D. Hall, C. F. Chignell, Steady-State Near-Infrared Detection of Singlet Molecular-Oxygen - A Stern–Volmer Quenching Experiment with Sodium-Azide, Photochem. Photobiol., 1987, 45, 459–464.

    Article  CAS  Google Scholar 

  28. C. Bosisio, V. Quercioli, M. Collini, L. D’Alfonso, G. Baldini, S. Bettati, B. Campanini, S. Raboni, G. Chirico, Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy, J. Phys. Chem. B, 2008, 112, 8806–8814.

    Article  CAS  Google Scholar 

  29. V. Quercioli, C. Bosisio, S. C. Daglio, F. Rocca, L. D’Alfonso, M. Collini, G. Baldini, G. Chirico, S. Bettati, S. Raboni, B. Campanini, Photoinduced Millisecond Switching Kinetics in the GFPMut2 E222Q Mutant, J. Phys. Chem. B, 2010, 114, 4664–4677.

    Article  CAS  Google Scholar 

  30. R. Bizzarri, M. Serresi, F. Cardarelli, S. Abbruzzetti, B. Campanini, C. Viappiani, F. Beltram, Single Amino Acid Replacement Makes Aequorea victoria Fluorescent Proteins Reversibly Photoswitchable, J. Am. Chem. Soc., 2010, 132, 85–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Nonell.

Additional information

This article is published as part of a themed issue on photofunctional proteins: from understanding to engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Banzo, A., Ragàs, X., Abbruzzetti, S. et al. Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochem Photobiol Sci 9, 1336–1341 (2010). https://doi.org/10.1039/c0pp00125b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00125b

Navigation