Skip to main content
Log in

Mechanistic studies on the photodegradation of 2,5-dialkyloxyl-substituted para-phenylenevinylene oligomers by singlet oxygen

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Time-dependent UV/visible absorption changes are observed on photolysis of aerated solutions of monodisperse, vinyl end-capped 2,5-diheptyloxyl substituted PV-oligomers (OPV, n = 1, 2, 3). In all cases, photolysis occurs in at least two distinct stages. Evidence for the intermediacy of singlet oxygen comes from pulse radiolysis and time-resolved luminescence studies, which confirm formation of the OPV triplet state and its quenching by molecular oxygen to produce singlet oxygen. The subsequent reaction with oligomers is observed directly by time-resolved phosphorescence and indirectly through product identification. The results strongly suggest that the reaction between singlet oxygen and OPV proceeds viacycloaddition, leading to bond scission and aldehyde group formation. The reactivity of vinylene linkages is greater than of vinyl end groups. Consequently, the photostability decreases as the chain length is extended. Implications on the oxidative degradation of poly(p-phenylenevinylene)s in optoelectronic devices, and of competing singlet oxygen and superoxideradical aniondegradation pathways, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Light emitting diodes based on conjugated polymers, Nature, 1990, 347, 539–541.

    Article  CAS  Google Scholar 

  2. A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and A. B. Holmes, Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev., 2009, 109, 897–1091.

    Article  CAS  PubMed  Google Scholar 

  3. S. Günes, H. Neugebauer and N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev., 2007, 107, 1324–1338.

    Article  PubMed  CAS  Google Scholar 

  4. J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Gate insulators in organic field-effect transistors, Chem. Mater., 2004, 16, 4543–4555.

    Article  CAS  Google Scholar 

  5. S. W. Thomas, G. D. Joly and T. M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev., 2007, 107, 1339–1386.

    Article  CAS  PubMed  Google Scholar 

  6. H. Jiang, P. Taranekar, J. R. Reynolds and K. S. Schanze, Conjugated polyelectrolytes: Synthesis, photophysics and applications, Angew. Chem., Int. Ed., 2009, 48, 4300–4316.

    Article  CAS  Google Scholar 

  7. D. Braun and A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 1991, 58, 1982–1984.

    Article  CAS  Google Scholar 

  8. H. Spreitzer, H. Becker, E. Kluge, W. Kreuder, H. Schenk, R. Demandt and H. Schoo, Soluble phenyl-substituted PPVs–New materials for highly efficient polymer LEDs, Adv. Mater., 1998, 10, 1340–1343.

    Article  CAS  Google Scholar 

  9. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 1995, 376, 498–500.

    Article  CAS  Google Scholar 

  10. T. Kaino, H. Kobayashi, K. Kubodera, T. Kurihara, S. Saito, T. Tsutsui and S. Tokito, Optical 3rd harmonic generation from poly(2,5-methoxy para-phenylenevinylene) thin-film, Appl. Phys. Lett., 1989, 54, 1619–1621.

    Article  CAS  Google Scholar 

  11. G. E. Wnek, J. C. W. Chien, F. E. Karasz and C. P. Lillya, Electrically conducting derivative of poly(para-phenylene vinylene), Polymer, 1979, 20, 1441–1443.

    Article  CAS  Google Scholar 

  12. J. L. Brédas, D. Beljonne, J. Shuai and J. M. Toussaint, Theoretical investigation of the effect of doping on the electronic properties of polyparaphenylene vinylene, Synth. Met., 1991, 43, 3743–4746.

    Article  Google Scholar 

  13. E. Thorn-Csányi and P. Kraxner, Synthesis of soluble, all-trans poly(2,5-diheptyl-p-phenylene-vinylene) via metathesis polycondensation, Macromol. Rapid Commun., 1995, 16, 147–153.

    Article  Google Scholar 

  14. E. Thorn-Csányi and P. Kraxner, All-trans oligomers of 2,5-dialkyl-1,4-phenylenevinylenes–metathesis preparation and characterization, Macromol. Chem. Phys., 1997, 198, 3827–3843.

    Article  Google Scholar 

  15. R. Peetz, A. Strachota, E. Thorn-Csányi, Homologous series of 2,5-diheptyloxy-p-phenylene vinylene (DHepO-PV) oligomers with vinyl or butenyl end groups: Synthesis, isolation and microstructure, Macromol. Chem. Phys., 2003, 204, 1439–1450.

    Article  CAS  Google Scholar 

  16. O. Narwark, S. C. J. Meskers, R. Peetz, E. Thorn-Csányi, H. Bässler, Spectroscopic characterization of p-phenylene vinylene (PV) oligomers. Part I: A homologous series of 2,5-diheptyloxy substituted PV-oligomers, Chem. Phys., 2003, 294, 1–15.

    Article  CAS  Google Scholar 

  17. O. Narwark, A. Gerhard, S. C. J. Meskers and S. Brocke, E- Thorn-Csányi and H. Bässler, Spectroscopic characterization of p-phenylene vinylene (PV) oligomers. Part II: Selected 2,5-diheptyl substituted PV-oligomers, Chem. Phys., 2003, 294, 17–30.

    Article  CAS  Google Scholar 

  18. J. Seixas, de Melo, J. Pina, H. D. Burrows, S. Brocke, O. Herzog, E. Thorn-Csányi, The effect of substitution and isomeric imperfection on the photophysical behaviour of p-phenylenevinylene trimers, Chem. Phys. Lett., 2004, 388, 236–241.

    Article  CAS  Google Scholar 

  19. J. Seixas de Melo, J. Pina, H. D. Burrows, R. DiPaolo, A. L. Maçanita, Electronic Spectral and Photophysical Properties of Some p-phenylenevinylene Oligomers in Solution and Thin Films, Chem. Phys., 2006, 330, 449–456.

    Article  CAS  Google Scholar 

  20. R. E. DiPaolo, J. Seixas, de Melo, J. Pina, H. D. Burrows, J. Morgado, A. L. Maçanita, Conformational relaxation of p-phenylenevinylene trimers in solution studied by picosecond time-resolved fluorescence, ChemPhysChem, 2007, 8, 2657–2664.

    Article  CAS  Google Scholar 

  21. R. Wehrmann, A. Elschner and E. Thorn-Csányi, Eur. Pat. 0?964?044, A1 Anmelder: Bayer AG.

  22. B. Tian, G. Zerbi, R. Schenk, K. Müllen, Optical-spectra and structure of oligomeric models of polyparaphenylenevinylene, J. Chem. Phys., 1991, 95, 3191–3197.

    Article  CAS  Google Scholar 

  23. H. Meier, U. Stalmach and H. Kolshorn, Effective conjugation length and UV/vis spectra of oligomers, Acta Polym., 1997, 48, 379–384.

    Article  CAS  Google Scholar 

  24. L. P. Candeias, J. Wildeman, G. Hadziioannou and J. M. Warman, Pulse radiolysis-optical absorption studies on the triplet states of p-phenylene vinylene oligomers in solution, J. Phys. Chem. B, 2000, 104, 8366–8371.

    Article  CAS  Google Scholar 

  25. J. Gierschner, H.-G. Mack, L. Lüer and D. Oelkrug, Fluorescence and absorption spectra of oligophenylenevinylenes: Vibronic coupling, band shapes, and solvatochromism, J. Chem. Phys., 2002, 116, 8596–8609.

    Article  CAS  Google Scholar 

  26. J. Gmeiner, S. Karg, M. Meier, W. Reiss, P. Strohrigl and M. Schwoerer, Synthesis, electrical conductivity and electroluminescence of poly(p-phenylene vinylene) prepared by the precursor route, Acta Polym., 1993, 44, 201–205.

    Article  CAS  Google Scholar 

  27. F. Cacialli, R. H. Friend, S. C. Moratti and A. B. Holmes, Characterization of properties of polymeric light-emitting diodes over extended periods, Synth. Met., 1994, 67, 157–160.

    Article  CAS  Google Scholar 

  28. R. D. Scurlock, B. J. Wang, P. R. Ogilby, J. R. Sheats and R. L. Clough, singlet oxygen as reactive intermediate in the photodegradation of an electroluminescent polymer, J. Am. Chem. Soc., 1995, 117, 10194–10202.

    Article  CAS  Google Scholar 

  29. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, Degradation and failure of MEH-PPV light-emitting diodes, J. Appl. Phys., 1996, 79, 2745–2751.

    Article  CAS  Google Scholar 

  30. L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock and T. M. Miller, Photophysics of phenylenevinylene polymers, Synth. Met., 1996, 80, 41–58.

    Article  CAS  Google Scholar 

  31. A. J. M. Berntsen, P. van de Weijer, Y. Croonen, C. T. H. F. Liedenbaum and J. J. M. Vleggaar, Stability of polymer light-emitting diodes, Philips J. Res., 1998, 51, 511–525.

    Article  CAS  Google Scholar 

  32. S. M. Lipson, D. F. O’Brien, H. J. Byrne, A. P. Davey and W. J. Blau, Investigation of efficiency and photostability in polymer films, Synth. Met., 2000, 111–112, 553–557.

    Article  Google Scholar 

  33. H. Wang, X. Tao and E. Newton, Thermal degradation kinetics and lifetime prediction of a luminescent conducting polymer, Polym. Int., 2004, 53, 20–26.

    Article  CAS  Google Scholar 

  34. R. Pacios, A. J. Chatten, K. Kawano, J. R. Durrant, D. D. C. Bradley and J. Nelson, Efects of photo-oxidation on the performance of poly[2-methoxy-5-(3′,7′-dimethoxyoctyloxy)-1,4-phenylene vinylene]:[6,6] C-61-butyric acid methyl ester solar cells, Adv. Funct. Mater., 2006, 16, 2117–2126.

    Article  CAS  Google Scholar 

  35. S. Chambon, A. Rivaton, J. L. Gardette and M. Firon, Durability of MDO-PPV:PCBMblends under illumination in the absence of oxygen, Sol. Energy Mater. Sol. Cells, 2008, 92, 785–792.

    Article  CAS  Google Scholar 

  36. N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl and P. R. Ogilby, Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers, Chem. Mater., 1999, 11, 1302–1305.

    Article  CAS  Google Scholar 

  37. H. D. Burrows, J. S. de Melo, C. Serpa, L. G. Arnaut, A. P. Monkman, I. Hamblett and S. Navaratnam, S1∼>T1 Intersystem Crossing in π-Conjugated Organic Polymers, J. Chem. Phys., 2001, 115, 9601–9606.

    Article  CAS  Google Scholar 

  38. E. Thorn-Csányi, O. Narwark, R. Peetz and A. Strachota, Diheptyloxy PV oligomers in solution: Photoreactivity, Synth. Met., 1999, 101, 238.

    Article  Google Scholar 

  39. H. W. Gibson and J. M. Pochan, Chemical modification of polymers.19. Oxidation of polyacetylene, Macromolecules, 1982, 15, 242–247.

    Article  CAS  Google Scholar 

  40. S. Holdcroft, A photochemical study of poly(3-hexylthiophene), Macromolecules, 1991, 24, 4834–4838.

    Article  CAS  Google Scholar 

  41. M. S. A. Abdou and S. Holdcroft, Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution, Macromolecules, 1993, 26, 2954–2962.

    Article  CAS  Google Scholar 

  42. L. Ma, X. Wang, B. Wang, J. Chen, J. Wang, K. Huang, B. Zhang, Y. Cao, Z. Han, S. Qian and S. Yao, Photooxidative degradation mechanism of model compounds of poly(p-phenylenevinylenes) [PPVs], Chem. Phys., 2002, 285, 85–94.

    Article  CAS  Google Scholar 

  43. S. Chambon, A. Rivaton, J.-L. Gardette, M. Firon and L. Lutsen, Aging of a donor conjugated polymer: Photochemical studies of the degradation of poly[2-methoxy-5-3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene], J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 317–331.

    Article  CAS  Google Scholar 

  44. S. Chambon, A. Rivaton, J.-L. Gardette and M. Firon, Reactive intermediates in the initiation step of the photo-oxidation of MDMO-PPV, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 6044–6052.

    Article  CAS  Google Scholar 

  45. The correct IUPAC name is 1,4-bis(heptyloxy)-2,5-divinylbenzene. The name 2,5-diheptyloxy-1,4-divinylbenzene is used in order to underline the structural similarity to 2,5-diheptyloxy-p-phenylenevinylene oligomers.

  46. R. Peetz, Ph.D. Thesis, University of Hamburg, 2000.

    Google Scholar 

  47. J. Butler, B. W. Hodgson, B. M. Hoey, E. J. Land, J. S. Lea, E. J. Lindley, F. A. P. Rushton and A. J. Swallow, Experimental studies of some moderately fast processes initiated by radiation, Radiat. Phys. Chem., 1989, 34, 633–646.

    Google Scholar 

  48. A. P. Monkman, H. D. Burrows, M. G. Miguel, I. Hamblett and S. Navaratnam, Measurement of the S0 - T1 Energy Gap in Poly(2-methoxy,5-(2′ethylhexoxy)-p-phenylenevinylene) by Triplet–triplet Energy Transfer, Chem. Phys. Lett., 1999, 307, 303–309.

    Article  CAS  Google Scholar 

  49. A. P. Monkman, H. D. Burrows, I. Hamblett, S. Navaratnam, U. Scherf and C. Schmitt, The Triplet state of the Ladder-type Methyl-poly(p-phenylene) as Seen by Pulse Radiolysis-Energy Transfer, Chem. Phys. Lett., 2000, 327, 111–116.

    Article  CAS  Google Scholar 

  50. A. P. Monkman, H. D. Burrows, M. da G. Miguel, I. Hamblett and S. Navaratnam, Triplet State Spectroscopy of Conjugated Polymers Studied by Pulse Radiolysis, Synth. Met., 2001, 116, 75–79.

    Article  CAS  Google Scholar 

  51. R. Bensasson and E. J. Land, Triplet–triplet extinction coefficients via energy transfer, Trans. Faraday Soc., 1971, 67, 1904–1915.

    Article  CAS  Google Scholar 

  52. R. V. Bensasson, E. J. Land and T. G. Truscott, Excited States and Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1993.

    Google Scholar 

  53. J. P. Keene, D. Kessel, E. J. Land, R. W. Redmond and T. G. Truscott, Direct detection of singlet oxygen sensitized by hematoporphyrinand related compounds, Photochem. Photobiol., 1986, 43, 117–120.

    Article  CAS  PubMed  Google Scholar 

  54. R. Bonnett, D. J. McGarvey, A. Harriman, E. J. Land, T. G. Truscott, U.-J. Winfield, Photophysical properties of meso-tetraphenylporphyrin and some meso(tetrahydroxyphenyl)porphyrins, Photochem. Photobiol., 1988, 48, 271–276.

    Article  CAS  PubMed  Google Scholar 

  55. S. M. Fonseca, J. Pina, L. G. Arnaut, J. Seixas, de Melo, H. D. Burrows, N. Chattopadhyay, L. Alcácer, A. Charas, J. Morgado, A. P. Monkman, U. Asawapirom, U. Scherf, R. Edge and S. Navaratnam, Triplet state and singlet oxygen formation in fluorene based alternating copolymers, J. Phys. Chem. B, 2006, 110, 8278–8283.

    Article  CAS  PubMed  Google Scholar 

  56. B.-M. Kwon, C. S. Foote and S. Khan, Chemistry of singlet oxygen. 52. Reaction with trans-stilbene, J. Org. Chem., 1989, 54, 3378–3382.

    Article  CAS  Google Scholar 

  57. F. Wilkinson and J. G. Brummer, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution, J. Phys. Chem. Ref. Data, 1981, 187, 809–999.

    Article  Google Scholar 

  58. P. Bortulos, S. Dellonte, G. Beggiato and W. Corio, Interaction between singlet oxygen (1Δg) and model compounds for polymers. Flash photolytic study, Eur. Polym. J., 1977, 13, 185–188.

    Article  Google Scholar 

  59. F. Wilkinson, W. P. Helman and A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  60. R. Battino (Ed.), IUPAC Solubility Data Series. Volume 7: Oxygen and Ozone, Pergamon Press, Oxford, 1981.

    Google Scholar 

  61. Y. Marcus, The Properties of Solvents, John Wiley, Chichester, 1998.

    Google Scholar 

  62. C. Schweitzer and R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  63. H. Meier, H. Kretschmann, M. Lang, W. Fass, C. Albrecht, K. März, Investigations on the photoconductivity of alkoxy substituted oligo(1,4-phenyleneethynylene)s and poly(1,4-phenyleneethynylene)s, J. Prakt. Chem., 1994, 336, 297–302.

    Article  CAS  Google Scholar 

  64. D. Beljonne, A. Ye, Z. Shuai, J.-L. Brédas, Chain length dependence of singlet and triplet exciton formation rates in organic light-emitting diodes, Adv. Funct. Mater., 2004, 14, 684–692.

    Article  CAS  Google Scholar 

  65. A. P. Monkman, C. Rothe and S. M. King, Singlet generation yields in organic light-emitting diodes, Proc. IEEE, 2009, 97, 1597–1605.

    Article  CAS  Google Scholar 

  66. U. Scherf and E. J. W. List, Semiconducting polyfluorenes. Towards reliable structure-property relationships, Adv. Mater., 2002, 14, 477.

    Article  CAS  Google Scholar 

  67. S. Gamerith, H. G. Nothofer, E. J. W. List and U. Scherf, Identification of emissive interface-related defects in polyfluorene-based light emitting devices, Jpn. J. Appl. Phys., 2004, 43, L891–L893.

    Article  CAS  Google Scholar 

  68. H. D. Burrows, M. da G. Miguel, A. P. Monkman, L. E. Horsburgh, I. Hamblett and S. Navaratnam, Pulse radiolysis studies of charge carriers in conjugated polymers, J. Chem. Phys., 2000, 112, 3082–3089.

    Article  CAS  Google Scholar 

  69. H. D. Burrows, M. da G. Miguel, A. P. Monkman, I. Hamblett and S. Navaratnam, Transient absorption spectra of triplet states and charge carriers of conjugated polymers, J. Mol. Struct., 2001, 563–564, 41–50.

    Article  Google Scholar 

  70. L. T. Spada and C. S. Foote, Electron-transfer photooxidation. 3. Detection of radical-ion intermediates in the cyanoaromatic-sensitized photoxidation of trans- and cis-stilbene, J. Am. Chem. Soc., 1980, 102, 391–393.

    Article  CAS  Google Scholar 

  71. P. Wardman, Some reactions and properties of nitro radical anions important in biology and medicine, Environ. Health Perspect., 1985, 64, 309–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H. D. Burrows, M. E. Azenha and C. J. P. Monteiro, Homogeneous Catalysis, in Catalysis from Theory to Application, ed. J. L. Figueiredo, M. M. Pereira and J. Faria, Imprensa da Universidade de Coimbra, Coimbra, 2008, pp. 495–517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh D. Burrows.

Additional information

† This article is published as part of a themed issue in appreciation of the many important contributions made to the field of molecular photophysics by Jan Verhoeven.

‡ Electronic supplementary information (ESI) available: Decay of transient absorption of DHepODVB-dimer triplet state at 500 nm in argon saturated and aerated solutions; mass spectrum of the photolysis product 2,5-diheptyloxy-terephthalaldehyde. See DOI: 10.1039/c0pp00053a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, H.D., Narwark, O., Peetz, R. et al. Mechanistic studies on the photodegradation of 2,5-dialkyloxyl-substituted para-phenylenevinylene oligomers by singlet oxygen. Photochem Photobiol Sci 9, 942–948 (2010). https://doi.org/10.1039/c0pp00053a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00053a

Navigation