Skip to main content
Log in

Photogenerated lophyl radicals in 1-alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

1-Alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides were investigated as a matrix for photogenerated lophyl radicals obtained by irradiation of o-chlorohexaarylbisimidazole (o-Cl-HABI). Photoinduced polymerization of ionic liquid monomers using the photoinitiator system composed of o-Cl-HABI and 3-mercapto-1,2,4-4H-triazole was investigated by photo-DSC. Selected thermal properties and viscosity of these ionic liquid monomers are important to understand the lophyl radical kinetics after exposure. Solvent cage effects and viscosity of the ionic liquid monomers strongly affect radical recombination in the dark. This was investigated at different temperatures. The rate constant for radical recombination (krec) decreases from the methyl to the butyl substituted ionic liquid monomer. This may be attributed to an increasing viscosity with increasing size of the alkyl substituent. However, further increase in the size of the alkyl substituent from a butyl to a heptyl group bound at the imidazolium ion results in an increase of krec although the viscosity does further increase. Therefore, a minimum in krec was found for the butyl substituted ionic liquid monomer. Furthermore, the Eyring parameters indicated a dependence on the chain length of the alkyl substituent bound at the imidazolium ion while the activation energy of the viscous flow only slightly changes. Furthermore, the size of the alkyl substituent bound at the cation of the ionic liquid monomers strongly influences both solvent cage and viscosity, and therefore, the concentration of lophyl radicals during photoinduced generation. Photo-induced polymerization of the ionic liquid monomers is affected by viscosity at low conversion and by vitrification at higher conversion. The latter is important for application of the ionic liquid monomers and the polymers made from them by photoinduced polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yoshizawa and H. Ohno, Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity, Electrochim. Acta, 2001, 46, 1723–1728.

    Article  CAS  Google Scholar 

  2. M. J. Muldoon and C. M. Gordon, Synthesis of Gel-Type Polymer Beads from Ionic Liquid Monomers, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 3865–3869.

    Article  CAS  Google Scholar 

  3. S. Ding, H. Tang, M. Radosz and Y. Shen, Atom Transfer Radical Polymerization of Ionic Liquid 2-(1-Butylimidazolium-3-yl)ethyl Methacrylate Tetrafluoroborate, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 5794–5801.

    Article  CAS  Google Scholar 

  4. J. Tan, W. Sun, H. Tang, M. Radosz and Y. Shen, Enhanced CO2 Absorption of Poly(ionic liquid)s, Macromolecules, 2005, 38, 2037–2039.

    Article  CAS  Google Scholar 

  5. H. L. Ricks-Laskoski and A. W. Snow, Synthesis and Electric Field Actuation of an Ionic Liquid Polymer, J. Am. Chem. Soc., 2006, 128, 12402–12403.

    Article  PubMed  CAS  Google Scholar 

  6. T. Nakashima, M. Sakashita, Y. Nonoguchi and T. Kawai, Sensitized Photopolymerization of an Ionic Liquid-Based Monomer by Using CdTe Nanocrystals, Macromolecules, 2007, 40, 6540–6544.

    Article  CAS  Google Scholar 

  7. Z. Jiménez, C. Bounds, C. E. Hoyle, A. B. Lowe, H. Zhou and J. A. Pojman, Photopolymerization Kinetics of Ionic Liquid Monomers Derived from the Neutralization Reaction Between Trialkylamines and Acid-Containing (Meth)Acrylates, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 3009–3021.

    Article  CAS  Google Scholar 

  8. Y. S. Vygodskii, O. A. Mel’nik, E. I. Lozinskaya, A. S. Shaplov, I. A. Malyshkina, N. D. Gavrilova, K. A. Lyssenko, M. Y. Antipin, D. G. Golovanov, A. A. Korlyukov, N. Ignat’ev, U. Welz-Biermann, The influence of ionic liquid’s nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials, Polym. Adv. Technol., 2007, 18, 50–63.

    Article  CAS  Google Scholar 

  9. H. Zhou, Z. Jiménez, J. A. Pojman, M. S. Paley and C. E. Hoyle, Photopolymerization Kinetics of Tributylmethylammonium-Based (Meth)acrylate Ionic Liquids and the Effect of Water, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3766–3773.

    Article  CAS  Google Scholar 

  10. S. Amajjahe and H. Ritter, Supramolecular Controlled Pseudo-LCST Effects of Cyclodextrin-Complexed Poly(ionic liquids), Macromolecules, 2008, 41, 3250–3253.

    Article  CAS  Google Scholar 

  11. S. Grubjesic, S. Seifert and M. A. Firestone, Cytoskeleton Mimetic Reinforcement of a Self-Assembled N,N′-Dialkylimidazolium Ionic Liquid Monomer by Copolymerization, Macromolecules, 2009, 42, 5461–5470.

    Article  CAS  Google Scholar 

  12. H. Chen and Y. A. Elabd, Polymerized Ionic Liquids: Solution Properties and Electrospinning, Macromolecules, 2009, 42, 3368–3373.

    Article  CAS  Google Scholar 

  13. H. Chen, J.-H. Choi, D. S. de la Cruz, K. I. Winey and Y. A. Elabd, Polymerized Ionic Liquids: The Effect of Random Copolymer Composition on Ion Conduction, Macromolecules, 2009, 42, 4809–4816.

    Article  CAS  Google Scholar 

  14. A. S. Shaplov, L. Goujon, F. Vidal, E. I. Lozinskaya, F. Meyer, I. A. Malyshkina, C. Chevrot, D. Teyssié, I. L. Odinets and Y. S. Vygodskii, Ionic IPNs as Novel Candidates for Highly Conductive Solid Polymer Electrolytes, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 4245–4266.

    Article  CAS  Google Scholar 

  15. A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, O. V. Okatova, G. M. Pavlov, C. Wandrey, A. Bhide, M. Schönhoff and Y. S. Vygodskii, Polymeric Ionic Liquids: Comparison of Polycations and Polyanions, Macromolecules, 2011, 44, 9792–9803.

    Article  CAS  Google Scholar 

  16. U. H. Choi, M. Lee, S. Wang, W. Liu, K. I. Winey, H. W. Gibson and R. H. Colby, Ionic Conduction and Dielectric Response of Poly(imidazolium acrylate) Ionomers, Macromolecules, 2012, 45, 3974–3985.

    Article  CAS  Google Scholar 

  17. T. W. Smith, M. Zhao, F. Yang, D. Smith and P. Cebe, Imidazole Polymers Derived from Ionic Liquid 4-Vinylimidazolium Monomers: Their Synthesis and Thermal and Dielectric Properties, Macromolecules, 2013, 46, 1133–1143.

    Article  CAS  Google Scholar 

  18. U. H. Choi, A. Mittal, T. L. Price Jr., H. W. Gibson, J. Runt and R. H. Colby, Polymerized Ionic Liquids with Enhanced Static Dielectric Constants, Macromolecules, 2013, 46, 1175–1186.

    Article  CAS  Google Scholar 

  19. M. H. Allen Jr., S. Wang, S. T. Hemp, Y. Chen, L. A. Madsen, K. I. Winey and T. E. Long, Hydroxyalkyl-Containing Imidazolium Homopolymers: Correlation of Structure with Conductivity, Macromolecules, 2013, 46, 3037–3045.

    Article  CAS  Google Scholar 

  20. J. Anderson, Synthesis of polymeric ionic liquid coated support using a photochemical polymerization process, PCT Int. Appl., 2013, WO 2013181345 (A 2)–2013-12-05, C08L39/02.

    Google Scholar 

  21. J. González-Álvarez, D. Blanco-Gomis, P. Arias-Abrodo, D. Díaz-Llorente, N. Ríos-Lombardía, E. Busto, V. Gotor-Fernández, M. D. Gutiérrez-Àlvarez, Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: Chemical synthesis and full characterization, Anal. Chim. Acta, 2012, 721, 173–181.

    Article  PubMed  CAS  Google Scholar 

  22. M. S. Paley, R. S. Libb, R. N. Grugel and R. E. Boothe, Ionic Liquid Epoxy Resin, US Pat. Appl, 2010/0004389, Jan 7, 2010.

    Google Scholar 

  23. V. N. Emel’yanenko, S. P. Verevkin, A. Heintz and C. Schick, Ionic Liquids. Combination of Combustion Calorimetry with High-Level Quantum Chemical Calculations for Deriving Vaporization Enthalpies, J. Phys. Chem. B, 2008, 112, 8095–8098.

    Article  PubMed  CAS  Google Scholar 

  24. J. M. S. S. Esperanca, J. N. C. Lopes, M. Tariq, L. M. N. F. Santos, J. W. Magee and L. P. N. Rebelo, Volatility of Aprotic Ionic Liquids–A Review, J. Chem. Eng. Data, 2010, 55, 3–12.

    Article  CAS  Google Scholar 

  25. V. Strehmel, A. Laschewsky, H. Wetzel, E. Görnitz, Free Radical Polymerization of n-Butyl Methacrylate in Ionic Liquids, Macromolecules, 2006, 39, 923–930.

    Article  CAS  Google Scholar 

  26. M. E. Kandil, K. N. Marsh and A. R. H. Goodwin, Measurement of the ViscosityDensity, and Electrical Conductivity of 1-Hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide at Temperatures between (288 and 433) K and Pressures below 50 MPa, J. Chem. Eng. Data, 2007, 52, 2382–2387.

    Article  CAS  Google Scholar 

  27. K. J. Thurecht, P. N. Gooden, S. Goel, C. Tuck, P. Licence and D. J. Irvine, Free-Radical Polymerization in Ionic Liquids: The Case for a Protected Radical, Macromolecules, 2008, 41, 2814–2820.

    Article  CAS  Google Scholar 

  28. V. Strehmel, J. F. Wishart, D. E. Polyansky and B. Strehmel, Recombination of Photogenerated Lophyl Radicals in Imidazolium-Based Ionic Liquids, ChemPhysChem, 2009, 10, 3112–3118.

    Article  PubMed  CAS  Google Scholar 

  29. V. Strehmel, Radicals in Ionic Liquids, ChemPhysChem, 2012, 13, 1649–1663.

    Article  CAS  PubMed  Google Scholar 

  30. S. Berdzinski, J. Horst, P. Straßburg and V. Strehmel, Recombination of Lophyl Radicals in Pyrrolidinium-Based Ionic Liquids, ChemPhysChem, 2013, 14, 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  31. A. B. Scranton, C. N. Bowman and R. W. Peiffer, Photopolymerization, ACS Symp. Ser., 1996, 673.

    Google Scholar 

  32. K. D. Belfield and J. V. Crivello, Photoinitiated Polymerization, ACS Symp. Ser., 2003, 847.

    Google Scholar 

  33. V. Strehmel, Epoxies: Structures, Photoinduced Cross-linking, Network Properties, and Applications, in Handbook of Photochemistry and Photobiology, ed. H. S. Nalwa, American Scientific Publishers, 2003, vol. 2, pp. 1–110.

    Article  CAS  Google Scholar 

  34. R. Schwalm, UV Coatings: Basics, Recent Developments and New Applications, Elsvier Science, Amsterdam, 2006.

    Google Scholar 

  35. B. Strehmel, Photopolymere in der Industrie, Nachr. Chem., 2014, 62, 128–133.

    Article  CAS  Google Scholar 

  36. H.-J. Timpe and B. Strehmel, Lichtinduzierte Polymer- und Polymerisationsreaktionen. 44. Zur Kinetik der radikalischen Photopolymerisation mehrfunktioneller Acrylate in polymeren Bindemitteln, Angew. Makromol. Chem., 1990, 178, 131–142.

    Article  CAS  Google Scholar 

  37. B. M. Monroe and G. C. Weed, Photoinitiators for free-radical-initiated photoimaging systems, Chem. Rev., 1993, 93, 435–448.

    Article  CAS  Google Scholar 

  38. E. Andrzejewska, M. Podgorska-Golubska, I. Stepniak and M. Andrzejewski, Photoinitiated polymerization in ionic liquids: Kinetics and viscosity effects, Polymer, 2009, 50, 2040–2047.

    Article  CAS  Google Scholar 

  39. J. V. Crivello and K. Dietliker, in Photoinitiators for free radical cationic and anionic photopolymerisation, ed. G. Bradley, John Wiley & Sons, New York, 1999, vol. III.

  40. K. Dietliker, A Compilation of Photoinitiators Commercially Available for UV Today, Sita Technology Ltd, Edinburgh, UK, 2002.

    Google Scholar 

  41. R. Dessauer, The invention of Dylux instant-access imaging materials and the development of HABI chemistry - a personal history, Adv. Photochem., 2005, 28, 129–261.

    Article  CAS  Google Scholar 

  42. R. Dessauer, Photochemistry, History and Commercial Applications of Hexaarylbiimidazoles: All about HABIs, Elsevier, 2006.

    Google Scholar 

  43. T. Hayashi and K. Maeda, Preparation of New Phototropic Substance, Bull. Chem. Soc. Jpn., 1960, 33, 565–566.

    Article  CAS  Google Scholar 

  44. T. Hayashi, K. Maeda, S. Shida and K. Nakada, A New Phototropic Substance and Its ESR, J. Phys. Chem., 1960, 1568–1568.

    Google Scholar 

  45. D. M. White and J. Sonnenberg, Oxidation of Triarylimidazoles. Structures of the Photochromic and Piezochromic Dimers of Triarylimidazyl Radicals, J. Am. Chem. Soc., 1966, 88, 3825–3829.

    Article  CAS  Google Scholar 

  46. M. A. J. Wilks and M. R. Willis, Kinetics of the Photochromic Decay Reaction of Solutions of 2,2′,4,4′,5,5′-Hexa-phenyl bi-imidazolyl, Nature, 1966, 212, 500–502.

    Article  CAS  Google Scholar 

  47. K. Maeda and T. Hayashi, Mechanism of photochromism, thermochromism, and piezochromism of dimers of triarylimidazolyl, Bull. Chem. Soc. Jpn., 1970, 43, 429–438.

    Article  CAS  Google Scholar 

  48. T. Shida, K. Maeda and T. Hayashi, Optical and ESR Studies on Triphenylimidazolyl Radicals Produced by Photolysis and Radiolysis at Low Temperature, Bull. Chem. Soc. Jpn., 1970, 43, 652–657.

    Article  CAS  Google Scholar 

  49. L. A. Cescon, G. R. Coraor, R. Dessauer, E. F. Silversmith and E. J. Urban, Some Properties of Triarylimidazolyl Radicals and Their Dimers, J. Org. Chem., 1971, 36, 2262–2267.

    Article  Google Scholar 

  50. B. S. Tanaseischuk, Triarylimidazole Radicals and Their Dimers, Chem. Heterocycl. Compd., 1972, 8, 1173–1180

    Article  Google Scholar 

  51. N. P. Ogarev, Khim. Geterotsikl. Soedin., 1972, 10, 1299–1307.

    Google Scholar 

  52. X.-Z. Qin, A. Lui, A. D. Trifunac and V. V. Krongauz, Photodissociation of hexaarylbiimidazole. 1. Triplet-state formation, J. Phys. Chem., 1991, 95, 5822–5826.

    Article  CAS  Google Scholar 

  53. Q. Q. Zhu, M. Fink, F. Seitz, S. Schneider and W. Schnabel, On the photolysis of bis[2-(o-chlorophenyl)-4,5-diphenylimidazole] sensitized by 2-isopropylthioxanthone or Michler’s ketone, J. Photochem. Photobiol., A, 1991, 59, 255–263.

    Article  CAS  Google Scholar 

  54. G. Fang, X. Jinqi and Y. Yongyuan, Study of Visible Light Photoinduced Polymerization of Methyl Methacrylate Initiated By Biimidazole/Coumarin Dye Systems, J. Photopolym. Sci. Technol., 1999, 12, 339–342.

    Article  CAS  Google Scholar 

  55. X. Allonas, J. P. Fouassier, M. Kaji, M. Miyasaka and T. Hidaka, Two and three component photoinitiating systems based on coumarin derivatives, Polymer, 2001, 42, 7627–7634.

    Article  CAS  Google Scholar 

  56. M. A. J. Wilks and M. R. Willis, Kinetics of the Photochromic Decay Reaction of 2,2′,4,4′,5,5′-Hexaphenyl-bi-imidazolyl, J. Chem. Soc. B, 1968, 1526–1529.

    Google Scholar 

  57. N. Cyr, M. A. J. Wilks and M. R. Willis, Electron spin resonance spectrum of the 2,4,5-triphenylimidazolyl radical, J. Chem. Soc. B, 1971, 404–406.

    Google Scholar 

  58. J. V. Caspar, I. V. Khudyakov, N. J. Turro and G. C. Weed, ESR Study of Lophyl Free Radicals in Dry Films, Macromolecules, 1995, 28, 636–641.

    Article  CAS  Google Scholar 

  59. S. Berdzinski, N. Strehmel, H. Lindauer, V. Strehmel and B. Strehmel, Extended mechanistic aspects on photoinitiated polymerization of 1,6-hexanediol diacrylate by hexaarylbisimidazoles and heterocyclic mercapto compounds, Photochem. Photobiol. Sci., 2014, 13, 789–798.

    Article  PubMed  CAS  Google Scholar 

  60. H. Tanino, T. Kondo, K. Okada and T. Goto, Structures of Three Isomeric Dimers of 2,4,5-Triphenylimidazolyl, Bull. Chem. Soc. Jpn., 1972, 45, 1474–1480.

    Article  CAS  Google Scholar 

  61. H. Sato, K. Kasatani and S. Murakami, Magnetic Field Effects on the Photochromism of Hexaphenylbiimidazolyl, Chem. Phys. Lett., 1988, 151, 97–101.

    Article  CAS  Google Scholar 

  62. D. Lavabre, G. Levy, J. P. Laplante and J. C. Micheau, Bistability in an isothermal photochemical system: the triphenylimidazolyl radical dimer in a CSTR, J. Phys. Chem., 1988, 92, 16–18.

    Article  CAS  Google Scholar 

  63. L. A. Cescon, G. R. Coraor, R. Dessauer, A. S. Deutsch, H. L. Jackson, A. MacLachlan, K. Marcali, E. M. Potrafke, R. E. Read, E. F. Silversmith and E. J. Urban, Some Reactions of Triarylimidazolyl Free Radicals, J. Org. Chem., 1971, 36, 2267–2272.

    Article  Google Scholar 

  64. R. H. Riem, A. MacLachlan, G. R. Coraor and E. J. Urban, The Flash Photolysis of a Substituted Hexaarylbiimidazole and Reactions of the Imidazolyl Radical, J. Org. Chem., 1971, 36, 2272–2275.

    Article  Google Scholar 

  65. A. MacLachlan and R. H. Riem, The Biimidazole-Sensitized Photooxidation of Leuca Triphenylmethane Dyes, J. Org. Chem., 1971, 36, 2275–2280.

    Article  CAS  Google Scholar 

  66. R. L. Cohen, Substituent Effects on the Reactivity of Triarylimidazolyl Free Radicals toward Tris(2-methyl-4-diethylaminophenyl)methane, J. Org. Chem., 1971, 36, 2280–2284.

    Article  CAS  Google Scholar 

  67. H. Ohno and M. Yoshizawa, Ion Conductive Polymers, in Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, John-Wiley & Sons, Inc., 2005, ch. 29, pp. 347–354.

    Chapter  Google Scholar 

  68. V. Strehmel, S. Berdzinski and H. Rexhausen, Interactions between Ionic Liquids and Radicals, J. Mol. Liq., 2014, 192, 153–170.

    Article  CAS  Google Scholar 

  69. K. Nakamura, T. Saiwaki and K. Fukao, Dielectric Relaxation Behavior of Polymerized Ionic Liquid, Macromolecules, 2010, 43, 6092–6098.

    Article  CAS  Google Scholar 

  70. Y. Ogo and T. Kyotani, Effect of pressure on the termination rate constant in free radical polymerization. Correlation between rate constant and monomer viscosity, Makromol. Chem., 1978, 179, 2407–2417.

    Article  CAS  Google Scholar 

  71. V. Strehmel, H. Rexhausen and P. Strauch, Influence of imidazolium bis(trifluoromethylsulfonylimide)s on the rotation of spin probes comprising ionic and hydrogen bonding groups, Phys. Chem. Chem. Phys., 2010, 12, 1933–1940.

    Article  PubMed  CAS  Google Scholar 

  72. V. Strehmel, H. Rexhausen, P. Strauch and B. Strehmel, Temperature Dependence of Interactions Between Stable Piperidine-1-yloxyl Derivatives and a Semicrystalline Ionic Liquid, ChemPhysChem, 2010, 11, 2125–2131.

    Article  CAS  Google Scholar 

  73. V. Strehmel, Radicals in Ionic Liquids, ChemPhysChem, 2012, 13, 1649–1663.

    Article  CAS  PubMed  Google Scholar 

  74. G. R. Tryson and A. R. Shultz, A calorimetric study of acrylate photopolymerization, J. Polym. Sci., Part B: Polym. Phys., 1979, 17, 2059–2075.

    CAS  Google Scholar 

  75. R. V. Ghorpade, S. M. Bhosle, S. Ponrathnam, C. R. Rajan, N. N. Chavan and R. Harikrishna, Photopolymerization kinetics of 2-phenylethyl (meth)acrylates studied by photo DSC, J. Polym. Res., 2012, 19, 9811–9818.

    Article  CAS  Google Scholar 

  76. M. C. Rusu, C. Block, G. Van Assche, B. Van Mele, Influence of temperature and UV intensity on photo-polymerization reaction studied by photo-DSC, J. Therm. Anal. Calorim., 2012, 110, 287–294.

    Article  CAS  Google Scholar 

  77. H.-J. Timpe and B. Strehmel, Zur Kinetik der radikalischen Photopolymerisation mehrfunktioneller Acrylate in polymeren Bindemitteln, Makromol. Chem., 1991, 192, 779–791.

    Article  CAS  Google Scholar 

  78. H.-J. Timpe, B. Strehmel, F. H. Roch and K. Fritzsche, Kinetische Studie der radikalinitiierten Photopolymerisation von Butandiol-1,4-dimethacrylat in Poly(vinylpyrrolidon)-Schichten mit einem isoperibolen Calorimeter, Acta Polym., 1987, 38, 238–244.

    Article  CAS  Google Scholar 

  79. D. F. Eaton, A. G. Horgan and J. P. Horgan, Mechanism of coinitiation of photopolymerization of methyl methacrylate by hexaarylbiimidazole—hydrogen-atom donor combinations. The role of electron transfer vs. direct hydrogen-atom abstraction, J. Photochem. Photobiol., A, 1991, 58, 373–391.

    Article  CAS  Google Scholar 

  80. R. M. Joshi, Heats of polymeric reactions. Part I. Construction of the calorimeter and measurements on some new monomers, J. Polym. Sci., 1962, 56, 313–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Strehmel or Veronika Strehmel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdzinski, S., Strehmel, B. & Strehmel, V. Photogenerated lophyl radicals in 1-alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides. Photochem Photobiol Sci 14, 714–725 (2015). https://doi.org/10.1039/c4pp00386a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00386a

Navigation