Skip to main content
Log in

Functional interaction structures of the photochromic retinal protein rhodopsin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We studied functional interaction structures of the vertebrate membranephotoreceptor rhodopsin containing retinal as a chromophore. Using time-resolved fluorescence depolarization we analyzed real-time dynamics and conformational changes of the cytoplasmic helix 8 (H8) preceding the long C-terminal tail of rhodopsin. H8 runs parallel to the membrane surface and extends from transmembrane helix 7 whose highly conserved NPxxY(x)F motif connects that region of rhodopsin with the retinal binding pocket. Our measurements indicate that photo-induced retinal isomerization from 11-cis to all-trans provokes conformational changes of H8, including slower motion and reduced flexibility, that are specific for the active metarhodopsin-II photo-intermediate. These conformational changes are absent in the retinal-devoid state opsin and in the phosphorylated metarhodopsin-II state upon receptor deactivation. Furthermore we show that membrane rim effects can influence interfacial reactions at the cytoplasmic rhodopsin surface such as proton transfer reactions between surface and aqueous bulk phase or binding of the signalingprotein transducin visualized with single-molecule widefield microscopy. These findings are important for an understanding of the effects of membrane structure on the photo-transduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. P. Klare, I. Chizhov and M. Engelhard, Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors, Results Probl. Cell Differ., 2008, 45, 73–122.

    Article  CAS  PubMed  Google Scholar 

  2. J. L. Spudich, The multitalented microbial sensory rhodopsins, Trends Microbiol., 2006, 14, 480–487.

    Article  CAS  PubMed  Google Scholar 

  3. U. Alexiev, R. Mollaaghababa, P. Scherrer, H. G. Khorana and M. P. Heyn, Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 372–376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. J. K. Lanyi, Halorhodopsin: a light-driven chloride ion pump, Annu. Rev. Biophys. Biophys. Chem., 1986, 15, 11–28.

    Article  CAS  PubMed  Google Scholar 

  5. P. Hegemann, Algal sensory photoreceptors, Annu. Rev. Plant Biol., 2008, 59, 167–189.

    Article  CAS  PubMed  Google Scholar 

  6. O. A. Sineshchekov, E. G. Govorunova and J. L. Spudich, Photosensory functions of channelrhodopsins in native algal cells, Photochem. Photobiol., 2009, 85, 556–563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. G. Nagel, D. Ollig, M. Fuhrmann, S. Kateriya, A. M. Musti, E. Bamberg and P. Hegemann, Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 2002, 296, 2395–2398.

    Article  CAS  PubMed  Google Scholar 

  8. D. A. Baylor, T. D. Lamb and K. W. Yau, Responses of retinal rods to single photons, J. Physiol., 1979, 288, 613–634.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. T. P. Sakmar, R. R. Franke and H. G. Khorana, Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 8309–8313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. F. Jager, K. Fahmy, T. P. Sakmar and F. Siebert, Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin, Biochemistry, 1994, 33, 10878–10882.

    Article  CAS  PubMed  Google Scholar 

  11. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider and R. A. Mathies, Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman, Science, 2005, 310, 1006–1009.

    Article  CAS  PubMed  Google Scholar 

  12. S. Ludeke, M. Beck, E. C. Yan, T. P. Sakmar, F. Siebert and R. Vogel, The role of Glu181 in the photoactivation of rhodopsin, J. Mol. Biol., 2005, 353, 345–356.

    Article  CAS  PubMed  Google Scholar 

  13. R. W. Schoenlein, L. A. Peteanu, R. A. Mathies and C. V. Shank, The first step in vision: femtosecond isomerization of rhodopsin, Science, 1991, 254, 412–415.

    Article  CAS  PubMed  Google Scholar 

  14. T. Yoshizawa and G. Wald, Pre-lumirhodopsin and the bleaching of visual pigments, Nature, 1963, 197, 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  15. R. Vogel, M. Mahalingam, S. Ludeke, T. Huber, F. Siebert and T. P. Sakmar, Functional role of the “ionic lock”-an interhelical hydrogen-bond network in family A heptahelical receptors, J. Mol. Biol., 2008, 380, 648–655.

    Article  CAS  PubMed  Google Scholar 

  16. N. Lehmann, U. Alexiev and K. Fahmy, Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin, J. Mol. Biol., 2007, 366, 1129–1141.

    Article  CAS  PubMed  Google Scholar 

  17. T. Okada, M. Sugihara, A. N. Bondar, M. Elstner, P. Entel and V. Buss, The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure, J. Mol. Biol., 2004, 342, 571–583.

    Article  CAS  PubMed  Google Scholar 

  18. S. Jager, I. Szundi, J. W. Lewis, T. L. Mah and D. S. Kliger, Effects of pH on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II, Biochemistry, 1998, 37, 6998–7005.

    Article  CAS  PubMed  Google Scholar 

  19. W. L. Hubbell, C. Altenbach, C. M. Hubbell and H. G. Khorana, Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking, Adv. Protein Chem., 2003, 63, 243–290.

    Article  CAS  PubMed  Google Scholar 

  20. T. P. Sakmar, Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same, Curr. Opin. Cell Biol., 2002, 14, 189–195.

    Article  CAS  PubMed  Google Scholar 

  21. A. G. Krishna, S. T. Menon, T. J. Terry and T. P. Sakmar, Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch, Biochemistry, 2002, 41, 8298–8309.

    Article  CAS  PubMed  Google Scholar 

  22. U. Alexiev, I. Rimke and T. Pohlmann, Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study, J. Mol. Biol., 2003, 328, 705–719.

    Article  CAS  PubMed  Google Scholar 

  23. T. Y. Kim, M. Moeller, K. Winkler, K. Kirchberg and U. Alexiev, Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps, Photochem. Photobiol., 2009, 85, 570–577.

    Article  CAS  PubMed  Google Scholar 

  24. S. Arnis and K. P. Hofmann, Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 7849–7853.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. T. Y. Kim, H. Uji-i, M. Moller, B. Muls, J. Hofkens and U. Alexiev, Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation, Biochemistry, 2009, 48, 3801–3803.

    Article  CAS  PubMed  Google Scholar 

  26. B. Knierim, K. P. Hofmann, O. P. Ernst and W. L. Hubbell, Sequence of late molecular events in the activation of rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 20290–20295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. M. Mahalingam, K. Martinez-Mayorga, M. F. Brown and R. Vogel, Two protonation switches control rhodopsin activation in membranes, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17795–17800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. D. A. Cherepanov, W. Junge and A. Y. Mulkidjanian, Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier, Biophys. J., 2004, 86, 665–680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. A. Knowles and A. Priestley, The preparation of 11-cis-retinal, Vision Res., 1978, 18, 115–116.

    Article  CAS  PubMed  Google Scholar 

  30. J. H. McDowell and H. Kuhn, Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: substrate activation and inactivation, Biochemistry, 1977, 16, 4054–4060.

    Article  CAS  PubMed  Google Scholar 

  31. R. S. Molday and D. MacKenzie, Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes, Biochemistry, 1983, 22, 653.

    Article  CAS  PubMed  Google Scholar 

  32. U. Wilden and H. Kuhn, Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites, Biochemistry, 1982, 21, 3014–3022.

    Article  CAS  PubMed  Google Scholar 

  33. S. K. Gibson, J. H. Parkes and P. A. Liebman, Phosphorylation stabilizes the active conformation of rhodopsin, Biochemistry, 1998, 37, 11393–11398.

    Article  CAS  PubMed  Google Scholar 

  34. M. Moller and U. Alexiev, Surface charge changes upon formation of the signaling state in visual rhodopsin, Photochem. Photobiol., 2009, 85, 501–508.

    Article  CAS  PubMed  Google Scholar 

  35. T. Y. Kim, K. Winkler and U. Alexiev, Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function, Photochem. Photobiol., 2007, 83, 378–384.

    Article  CAS  PubMed  Google Scholar 

  36. G. F. Schroder, U. Alexiev and H. Grubmuller, Simulation of fluorescence anisotropy experiments: probing protein dynamics, Biophys. J., 2005, 89, 3757–3770.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. R. Vogel and F. Siebert, Conformation and stability of alpha-helical membrane proteins. 1. Influence of salts on conformational equilibria between active and Inactive states of rhodopsin, Biochemistry, 2002, 41, 3529–3535.

    Article  CAS  PubMed  Google Scholar 

  38. R. G. Matthews, R. Hubbard, P. K. Brown and G. Wald, Tautomeric Forms Of Metarhodopsin, J. Gen. Physiol., 1963, 47, 215–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. J. H. Parkes and P. A. Liebman, Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions, Biochemistry, 1984, 23, 5054–5061.

    Article  CAS  PubMed  Google Scholar 

  40. R. Vogel, T. P. Sakmar, M. Sheves and F. Siebert, Coupling of protonation switches during rhodopsin activation, Photochem. Photobiol., 2007, 83, 286–292.

    Article  CAS  PubMed  Google Scholar 

  41. R. D. Hamer, S. C. Nicholas, D. Tranchina, P. A. Liebman and T. D. Lamb, Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses, J. Gen. Physiol., 2003, 122, 419–444.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. S. K. Gibson, J. H. Parkes and P. A. Liebman, Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin, Biochemistry, 2000, 39, 5738–5749.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Alexiev.

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchberg, K., Kim, TY., Haase, S. et al. Functional interaction structures of the photochromic retinal protein rhodopsin. Photochem Photobiol Sci 9, 226–233 (2010). https://doi.org/10.1039/b9pp00134d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00134d

Navigation