Skip to main content

Microbial Rhodopsins: Scaffolds for Ion Pumps, Channels, and Sensors

  • Chapter
  • First Online:
Bioenergetics

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 45))

Abstract

Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam M, Lebert M, Oesterhelt D, Hazelbauer GL (1989) Methyl-accepting taxis proteins in Halobacterium halobium. Eur Mol Biol Org J 8:631–639

    CAS  Google Scholar 

  • Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signaling proteins. FEMS Microbiol Lett 176:111–116

    PubMed  CAS  Google Scholar 

  • Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2. Neuron 54:205–218

    PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: A Proton Pump with a Light-Harvesting Carotenoid Antenna. Science 309:2061–2064

    PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Lanyi JK (2006) Induced Chirality of the Light-Harvesting Carotenoid Salinixanthin and Its Interaction with the Retinal of Xanthorhodopsin. Biochemistry 45:10998–11004

    PubMed  CAS  Google Scholar 

  • Baldwin JM, Henderson R, Beckman E, Zemlin F (1988) Images of purple membrane at 2.8 A resolution obtained by cryo-electron microscopy. J Mol Biol 202:585–591

    PubMed  CAS  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LT, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EM, DeLong EF (2000) Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science 289:1902–1906

    PubMed  CAS  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    PubMed  CAS  Google Scholar 

  • Bieszke JA, Spudich EM, Scott KL, Borkovich KA, Spudich JL (1999b) A Eukaryotic Protein, NOP-1, Binds Retinal To Form an Archaeal Rhodopsin-like Photochemically Reactive Pigment. Biochemistry 38:14138–14145

    PubMed  CAS  Google Scholar 

  • Bivin DB, Stoeckenius W (1986) Photoactive Retinal Pigments in Haloalkaliphilic Bacteria. J Gen Microbiol 132:2167–2177

    PubMed  CAS  Google Scholar 

  • Blanck A, Oesterhelt D (1987) The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J 6:265–273

    PubMed  CAS  Google Scholar 

  • Blanck A, Oesterhelt D, Ferrando E, Schegk ES, Lottspeich F (1989) Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor. EMBO J 8:3963–3971

    PubMed  CAS  Google Scholar 

  • Blaurock AE, Stoeckenius W (1971) Structure of the Purple Membrane. Nat New Biol 233:152–155

    PubMed  CAS  Google Scholar 

  • Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci USA 79:6250–6254

    PubMed  CAS  Google Scholar 

  • Bordignon E, Klare JP, Döbber MA, Wegener AA, Martell S, Engelhard M, Steinhoff H-J (2005) Structural Analysis of a HAMP Domain: The Linker Region of the Phototransducer in Complex with Sensory Rhodopsin II. J Biol Chem 280:38767–38775

    PubMed  CAS  Google Scholar 

  • Bordignon E, Klare JP, Holterhues J, Martell S, Krasnaberski A, Engelhard M, Steinhoff H-J (2007) Analysis of Light-Induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopy+. Photochem Photobiol 83:2–272

    Article  CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    PubMed  CAS  Google Scholar 

  • Brown LS, Jung K-H (2006) Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5:538–546

    PubMed  CAS  Google Scholar 

  • Chervitz SA, Falke JJ (1996) Molecular mechanism of transmembrane signaling by the aspartate receptor – A model. Proc Natl Acad Sci USA 93:2545–2550

    PubMed  CAS  Google Scholar 

  • Chizhov I, Chernavskii DS, Engelhard M, Müller KH, Zubov BV, Hess B (1996) Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J 71:2329–2345

    PubMed  CAS  Google Scholar 

  • Chizhov I, Engelhard M (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 81:1600–1612

    PubMed  CAS  Google Scholar 

  • Chizhov I, Engelhard M, Chernavskii DS, Zubov B, Hess B (1992) Temperature and pH sensitivity of the O640 intermediate of the bacteriorhodopsin photocycle. Biophys J 61:1001–1006

    CAS  PubMed  Google Scholar 

  • Chizhov I, Schmies G, Seidel R, Sydor JR, Lüttenberg B, Engelhard M (1998) The photophobic receptor from Natronobacterium pharaonis – temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J 75:999–1009

    PubMed  CAS  Google Scholar 

  • Danon A, Stoeckenius W (1974) Photophosphorylation in Halobacterium halobium. Proc Natl Acad Sci USA 71:1234–1238

    PubMed  CAS  Google Scholar 

  • de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 100:12830–12835

    PubMed  Google Scholar 

  • Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    PubMed  CAS  Google Scholar 

  • Dencher NA (1983) The Five Retinal -Protein Pigments of Halobacteria: Bacteriorhodopsin, Halorhodopsin, P 565, P 370 and Slow-Cycling Rhodopsin. Photochem Photobiol 38:753–756

    CAS  Google Scholar 

  • Dencher NA (1978) Light-induced behavioral reactions in Halobacterium halobium: Evidence for two rhodopsins acting as photopigments. In: Energetics and Structure of Halophilic Microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam, pp 67–88

    Google Scholar 

  • Dencher NA, Hildebrand E (1979) Sensory transduction in Halobacterium halobium: retinal protein pigment controls UV-induced behavioral response. Z Naturforsch C 34:841–847

    PubMed  CAS  Google Scholar 

  • Dollinger G, Eisenstein L, Lin S-L, Nakanishi K, Odashima K, Termini J (1986) Bacteriorhodopsin: Fourier Transform Infrared Methods for Studies of Protonation of Carboxyl Groups. Meth Enzym 127:649–662

    PubMed  CAS  Google Scholar 

  • Druckmann S, Friedman N, Lanyi JK, Needleman R, Ottolenghi M, Sheves M (1992) The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin: Mechanism and evidence for two M species. Photochem Photobiol 56:1041–1047

    PubMed  CAS  Google Scholar 

  • Duschl A, Lanyi JK, Zimányi L (1990) Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem 265:1261–1267

    PubMed  CAS  Google Scholar 

  • Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, Landau EM (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401:822–826

    PubMed  CAS  Google Scholar 

  • Edman K, Royant A, Nollert P, Maxwell CA, Pebay-Peyroula E, Navarro J, Neutze R, Landau EM (2002) Early Structural Rearrangements in the Photocycle of an Integral Membrane Sensory Receptor. Structure 10:473–482

    PubMed  CAS  Google Scholar 

  • Edmonds BW, Luecke H (2004) Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. Front Biosci 9:1556–1566

    PubMed  CAS  Google Scholar 

  • Eisenstein L, Lin SL, Dollinger G, Odashima K, Ding WD, Nakanishi K (1987) FTIR difference studies on apoproteins; protonation states of aspartic- and glutamic acid residues during the photocycle of bacteriorhodopsin. J Am Chem Soc 109:6860–6862

    CAS  Google Scholar 

  • Eisfeld W, Althaus T, Stockburger M (1995) Evidence for parallel photocycles and implications for the proton pump in bacteriorhodopsin. Biophys Chem 56:105–112

    PubMed  CAS  Google Scholar 

  • Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, Kouyama T (2006) Crystal Structures of Archaerhodopsin-1 and -2: Common Structural Motif in Archaeal Light-driven Proton Pumps. J Mol Biol 358:675–685

    PubMed  CAS  Google Scholar 

  • Engelhard M, Gerwert K, Hess B, Kreutz W, Siebert F (1985) Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: An investigation by static and time-resolved infrared difference spectroscopy using [4-13C] aspartic acid labeling purple membrane. Biochemistry 24:400–407

    PubMed  CAS  Google Scholar 

  • Engelhard M, Hofmann KP (2006) Photoreceptors. In: Rückpaul R, Ganten D (eds) Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer Verlag, Berlin, pp 1407–1413

    Google Scholar 

  • Engelhard M, Schmies G, Wegener AA (2003) Archaebacterial Phototaxis. In: Batschauer A (ed) Photoreceptors and Light Signaling. Royal Society of Chemistry, Cambridge, pp 1–39

    Google Scholar 

  • Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary Structure, Dynamics, and Topology of a Seven-Helix Receptor in Native Membranes, Studied by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 46:459–462

    PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    PubMed  CAS  Google Scholar 

  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    PubMed  CAS  Google Scholar 

  • Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E (2002) Proteorhodopsin is a Light-driven Proton Pump with Variable Vectoriality. J Mol Biol 321:821–838

    PubMed  CAS  Google Scholar 

  • Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    PubMed  CAS  Google Scholar 

  • Furutani Y, Kamada K, Sudo Y, Shimono K, Kamo N, Kandori H (2005) Structural Changes of the Complex between pharaonis Phoborhodopsin and Its Cognate Transducer upon Formation of the M Photointermediate. Biochemistry 44:2909–2915

    PubMed  CAS  Google Scholar 

  • Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    PubMed  CAS  Google Scholar 

  • Gerwert K, Hess B, Soppa J, Oesterhelt D (1989) Role of aspartate-96 in proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 86:4943–4947

    PubMed  CAS  Google Scholar 

  • Gmelin W, Zeth K, Efremov R, Heberle J, Tittor J, Oesterhelt D (2007) The Crystal Structure of the L1 Intermediate of Halorhodopsin at 1.9 Å Resolution. Photochem Photobiol 83:369–372

    Article  PubMed  CAS  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signaling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    PubMed  CAS  Google Scholar 

  • Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic Refinement of the Structure of Bacteriorhodopsin. J Mol Biol 259:393–421

    PubMed  CAS  Google Scholar 

  • Grudinin S, Büldt G, Gordeliy V, Baumgaertner A (2005) Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin–Molecular Dynamics Simulations of the Ground State and the M-Intermediate. Biophys J 88:3252–3261

    PubMed  CAS  Google Scholar 

  • Hackmann C, Guijarro J, Chizhov I, Engelhard M, Rödig C, Siebert F (2001) Static and time-resolved step-scan fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. Biophys J 81:394–406

    PubMed  CAS  Google Scholar 

  • Harbison GS, Roberts JD, Herzfeld J, Griffin RG (1988) Solid state NMR detection of proton exchange between the bacteriorhodopsin Schiff base and bulk water. J Am Chem Soc 110:7221–7223

    CAS  Google Scholar 

  • Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489–491

    CAS  Google Scholar 

  • Haupts U, Tittor J, Bamberg E, Oesterhelt D (1997) General concept for ion translocation by halobacterial retinal proteins – the isomerization/switch/transfer (IST) model. Biochemistry 36:2–7

    PubMed  CAS  Google Scholar 

  • Havelka WA, Henderson R, Heymann JAW, Oesterhelt D (1993) Projection Structure of Halorhodopsin from Halobacterium halobium at 6 A Resolution Obtained by Electron Cryo-microscopy. J Mol Biol 234:837–846

    PubMed  CAS  Google Scholar 

  • Havelka WA, Henderson R, Oesterhelt D (1995) Three-dimensional structure of halorhodopsin at 7 Å resolution. J Mol Biol 247:726–738

    PubMed  CAS  Google Scholar 

  • Heberle J, Fitter J, Sass HJ, Büldt G (2000) Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys Chem 85:229–248

    PubMed  CAS  Google Scholar 

  • Hein M, Wegener AA, Engelhard M, Siebert F (2003) Time-Resolved FTIR Studies of Sensory Rhodopsin II (NpSRII) from Natronobacterium pharaonis: Implications for Proton Transport and Receptor Activation. Biophys J 84:1208–1217

    PubMed  CAS  Google Scholar 

  • Helmreich EJM, Hofmann KP (1996) Structure and function of proteins in G-protein-coupled signal transfer. BBA-Rev Biomembranes 1286:285–322

    CAS  Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high- resolution electron cryo-microscopy. J Mol Biol 213:899–929

    PubMed  CAS  Google Scholar 

  • Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    PubMed  CAS  Google Scholar 

  • Hildebrand E, Dencher N (1975) Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257:46–48

    PubMed  CAS  Google Scholar 

  • Hippler-Mreyen S, Klare JP, Wegener AA, Seidel RP, Herrmann C, Schmies G, Nagel G, Bamberg E, Engelhard M (2003) Probing the Sensory Rhodopsin II Binding Domain of its Cognate Transducer by Calorimetry and Electrophysiology. J Mol Biol 330:1203–1213

    PubMed  CAS  Google Scholar 

  • Hoff WD, Jung K-H, Spudich JL (1997) Molecular Mechanism of Photosignaling by Archaeal Sensory Rhodopsins. Annu Rev Biophys Biomol Struct 26:223–258

    PubMed  CAS  Google Scholar 

  • Hohenfeld IP, Wegener AA, Engelhard M (1999) Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett 442:198–202

    PubMed  CAS  Google Scholar 

  • Hou SB, Brooun A, Yu HS, Freitas T, Alam M (1998) Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon halobacterium salinarum. J Bacteriol 180:1600–1602

    PubMed  CAS  Google Scholar 

  • Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling. Cell 126:929–940

    PubMed  CAS  Google Scholar 

  • Ihara K, Amemiya T, Miyashita Y, Mukohata Y (1994) Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs. Biophys J 67:1187–1191

    PubMed  CAS  Google Scholar 

  • Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, Mukohata Y (1999) Evolution of the Archaeal Rhodopsins: Evolution Rate Changes by Gene Duplication and Functional Differentiation. J Mol Biol 285:163–174

    PubMed  CAS  Google Scholar 

  • Inoue K, Sasaki J, Spudich JL, Terazima M (2007) Laser-Induced Transient Grating Analysis of Dynamics of Interaction between Sensory Rhodopsin II D75N and the HtrII Transducer. Biophys J 92:2028–2040

    PubMed  CAS  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    PubMed  CAS  Google Scholar 

  • Jung KH, Spudich EN, Trivedi VD, Spudich JL (2001) An Archaeal Photosignal-Transducing Module Mediates Phototaxis in Escherichia coli. J Bacteriol 183:6365–6371

    PubMed  CAS  Google Scholar 

  • Kamikubo H, Kataoka M, Váró G, Oka T, Tokunaga F, Needleman R, Lanyi JK (1996) Structure of the N intermediate of bacteriorhodopsin revealed by X-ray diffraction. Proc Natl Acad Sci USA 93:1386–1390

    PubMed  CAS  Google Scholar 

  • Kataoka M, Kamikubo H, Tokunaga F, Brown LS, Yamazaki Y, Maeda A, Sheves M, Needleman R, Lanyi JK (1994) Energy coupling in an ion pump. The reprotonation switch of bacteriorhodopsin. J Mol Biol 243:621–638

    PubMed  CAS  Google Scholar 

  • Khorana HG (1993) Two light-transducing membrane proteins: Bacteriorhodopsin and the mammilian rhodopsin. Proc Natl Acad Sci USA 90:1166–1171

    PubMed  CAS  Google Scholar 

  • Kim KK, Yokota H, Kim S-H (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792

    PubMed  CAS  Google Scholar 

  • Kim S-H (1994) Frozen dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors. Protein Sci 3:159–165

    PubMed  Google Scholar 

  • Klare JP, Bordignon E, Engelhard M, Steinhoff HJ (2004a) Sensory rhodopsin II and bacteriorhodopsin: Light activated helix F movement. Photochem Photobiol Sci 3:543–547

    PubMed  CAS  Google Scholar 

  • Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff H-J, Engelhard M (2004b) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224

    PubMed  CAS  Google Scholar 

  • Klare JP, Schmies G, Chizhov I, Shimono K, Kamo N, Engelhard M (2002) Probing the proton channel and the retinal binding site of Natronobacterium pharaonis sensory rhodopsin II. Biophys J 82:2156–2164

    PubMed  CAS  Google Scholar 

  • Klink BU, Winter R, Engelhard M, Chizhov I (2002) Pressure Dependence of the Photocycle Kinetics of Bacteriorhodopsin. Biophys J 83:3490–3498

    PubMed  CAS  Google Scholar 

  • Koch MHJ, Dencher NA, Oesterhelt D, Plöhn H-J, Rapp G, Büldt G (1991) Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J 10:521–526

    PubMed  CAS  Google Scholar 

  • Koch MK (2005) Investigations on halobacterial transducers with respect to membrane potential sensing and adaptive methylation. Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München, München, pp 1–171

    Google Scholar 

  • Kolbe M, Besir H, Essen LO, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1396

    PubMed  CAS  Google Scholar 

  • Korenstein R, Hess B, Kuschmitz D (1978) Branching reactions in the photocycle of bacteriorhodpsin. FEBS Lett 93:266–270

    PubMed  CAS  Google Scholar 

  • Kouyama T, Nishikawa T, Tokuhisa T, Okumura H (2004) Crystal Structure of the L Intermediate of Bacteriorhodopsin: Evidence for Vertical Translocation of a Water Molecule during the Proton Pumping Cycle. J Mol Biol 335:531–546

    PubMed  CAS  Google Scholar 

  • Kulcsár A, Groma GI, Lanyi JK, Váró G (2000) Characterization of the Proton-Transporting Photocycle of Pharaonis Halorhodopsin. Biophys J 79:2705–2713

    PubMed  Google Scholar 

  • Landau EM, Rosenbusch JP (1996) Lipidic cubic phases – a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93:14532–14535

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Duschl A, Hatfield GW, May K, Oesterhelt D (1990) The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem 265:1253–1260

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Váró G (1995) The photocycles of bacteriorhodopsin. Isr J Chem 35:365–385

    CAS  Google Scholar 

  • Lanyi JK (2000) Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin. BBA-Bioenergetics 1459:339–345

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Schobert B (2003) Mechanism of Proton Transport in Bacteriorhodopsin from Crystallographic Structures of the K, L, M1, M2, and M2′ Intermediates of the Photocycle. J Mol Biol 328:439–450

    PubMed  CAS  Google Scholar 

  • Lanyi JK (2004a) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    PubMed  CAS  Google Scholar 

  • Lanyi JK (2004b) X-ray diffraction of bacteriorhodopsin photocycle intermediates. Mol Membrane Biol 21:143–150

    CAS  Google Scholar 

  • Lanyi JK, Schobert B (2004) Local-global conformational coupling in a heptahelical membrane protein: Transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle. Biochemistry 43:3–8

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Schobert B (2006) Propagating Structural Perturbation Inside Bacteriorhodopsin: Crystal Structures of the M State and the D96A and T46V Mutants. Biochemistry 45:12003–12010

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Schobert B (2007) Structural Changes in the L Photointermediate of Bacteriorhodopsin. J Mol Biol 365:1379–1392

    PubMed  CAS  Google Scholar 

  • Le Moual H, Koshland DE Jr (1996) Molecular Evolution of the C-terminal Cytoplasmic Domain of a Superfamiliy of Bacterial Receptors Involved in Taxis. J Mol Biol 261:568–585

    PubMed  Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys J 15:955–962

    PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK (2000) Coupling Photoisomerization of Retinal to Directional Transport in Bacteriorhodopsin. J Mol Biol 300:1237–1255

    PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 Ångstroms: Insights into color tuning and transducer interaction. Science 293:1499–1503

    PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structural changes in bacteriorhodopsin during ion transport at 2 Ångstrom resolution. Science 286:255–261

    PubMed  CAS  Google Scholar 

  • Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Beja O (2003) Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–1731

    PubMed  CAS  Google Scholar 

  • Man-Aharonovich D, Sabehi G, Sineshchekov OA, Spudich EN, Spudich JL, Beja O (2004) Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea. Photochem Photobiol Sci 3:459–462

    PubMed  CAS  Google Scholar 

  • Marwan W, Oesterhelt D (1990) Quantitation of photochromism of sensory rhodopsin-I by computerized tracking of Halobacterium halobium cells. J Mol Biol 215:277–285

    PubMed  CAS  Google Scholar 

  • Mathias G, Marx D (2007) Structures and spectral signatures of protonated water networks in bacteriorhodopsin. PNAS 104:6980–6985

    PubMed  CAS  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    PubMed  CAS  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1980) ATP synthesis linked to light-dependent proton uptake in a red mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys 199:297–303

    PubMed  CAS  Google Scholar 

  • Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 85:4148–4152

    PubMed  CAS  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    PubMed  CAS  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119

    PubMed  CAS  Google Scholar 

  • Mukohata Y, Matsuno-Yagi A, Kaji Y (1980) Light-induced proton uptake and ATP synthesis by bacteriorhodopdin-depleted Halobacterium. In: Morishita H, Masui M (eds) Saline Environment. Business Center Academic Society, Tokyo, pp 31–38

    Google Scholar 

  • Mukohata Y, Ihara K, Tamura T, Sugiyama Y (1999) Halobacterial rhodopsins. J Biochem 125:649–657

    PubMed  CAS  Google Scholar 

  • Mukohata Y, Kaji Y (1981) Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N′-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch Biochem Biophys 206:72–76

    PubMed  CAS  Google Scholar 

  • Müller K-H, Butt HJ, Bamberg E, Fendler K, Hess B, Siebert F, Engelhard M (1991) The reaction cycle of bacteriorhodopsin: An analysis using visible absorption, photocurrent and infrared techniques. Eur Biophys J 19:241–251

    Google Scholar 

  • Müller K-H, Plesser T (1991) Variance reduction by simultaneous multi-exponential analysis of data sets from different experiments. Eur Biophys J 19:231–240

    Google Scholar 

  • Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005a) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Transact 33:863–866

    CAS  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005b) Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. Curr Biol 15:2279–2284

    PubMed  CAS  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algaee. Science 296:2395–2398

    PubMed  CAS  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    PubMed  CAS  Google Scholar 

  • Nagle JF, Zimányi L, Lanyi JK (1995) Testing BR photocycle kinetics. Biophys J 68:1490–1499

    PubMed  CAS  Google Scholar 

  • Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. BBA-Biomembranes 1565:144–167

    PubMed  CAS  Google Scholar 

  • Ni BF, Chang M, Duschl A, Lanyi J, Needleman R (1990) An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium. Gene 90:169–172

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Murakami M, Kouyama T (2005) Crystal Structure of the 13-cis Isomer of Bacteriorhodopsin in the Dark-adapted State. J Mol Biol 352:319–328

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt D (1995) Structure and function of halorhodopsin [review]. Isr J Chem 35:475–494

    CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    PubMed  CAS  Google Scholar 

  • Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:849–500

    Google Scholar 

  • Olkhova E, Hutter MC, Lill MA, Helms V, Michel H (2004) Dynamic water networks in cytochrome C oxidase from Paracoccus denitrificans investigated by molecular dynamics simulations. Biophys J 86:1873–1889

    PubMed  CAS  Google Scholar 

  • Park SY, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR (2006) Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 13:400–407

    PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 Ångstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    PubMed  CAS  Google Scholar 

  • Prado MM, Prado A, Fernandez R, Avalos J (2004) A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Gen 46:47–58

    CAS  Google Scholar 

  • Radzwill N, Gerwert K, Steinhoff H-J (2001) Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys J 80:2856–2866

    PubMed  CAS  Google Scholar 

  • Rothschild KJ, Zagaeski M, Cantore WA (1981) Conformational Changes of Bacteriorhodopsin Detected by Fourier Transform Infrared Difference Spectroscopy. Biochem Biophys Res Commun 103:483–489

    PubMed  CAS  Google Scholar 

  • Royant A, Nollert P, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J (2001a) X-ray structure of sensory rhodopsin II at 2.1 Å resolution. Proc Natl Acad Sci USA 98:10131–10136

    PubMed  CAS  Google Scholar 

  • Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R (2001b) Spectroscopic Characterization of Bacteriorhodopsins l-intermediate in 3D Crystals Cooled to 170 K. Photochem Photobiol 74:794–804

    PubMed  CAS  Google Scholar 

  • Rudolph J, Oesterhelt D (1995) Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J 14:667–673

    PubMed  CAS  Google Scholar 

  • Rudolph J, Oesterhelt D (1996) Deletion Analysis of the che Operon in the Archaeon Halobacterium salinarium. J Mol Biol 258:548–554

    PubMed  CAS  Google Scholar 

  • Rudolph J, Nordmann B, Storch KF, Gruenberg H, Rodewald K, Oesterhelt D (1996) A family of halobacterial transducer proteins. FEMS Microbiol Lett 139:161–168

    PubMed  CAS  Google Scholar 

  • Ruiz-Gonzalez MX, Marin I (2004) New Insights into the Evolutionary History of Type 1 Rhodopsins. J Mol Evol 58:348–358

    PubMed  CAS  Google Scholar 

  • Sabehi G, Beja O, Suzuki MT, Preston CM, DeLong EF (2004) Different SAR86 subgroups harbour divergent proteorhodopsins. Environ Microbiol 6:903–910

    PubMed  Google Scholar 

  • Sabehi G, Massana R, Bielawski JP, Rosenberg M, DeLong EF, Beja O (2003) Novel Proteorhodopsin variants from the Mediterranean and Red Seas. Environ Microbiol 5:842–849

    PubMed  CAS  Google Scholar 

  • Sakmar TP (1998) Rhodopsin: A prototypical G protein-coupled receptor. Prog Nucl Acid Res Mol Biol 59:1–34

    Article  CAS  Google Scholar 

  • Saranak J, Foster KW (1997) Rhodopsin guides fungal phototaxis. Nature 387:465–466

    PubMed  CAS  Google Scholar 

  • Sasaki J, Brown LS, Chon Y-S, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75

    PubMed  CAS  Google Scholar 

  • Sass HJ, Schachowa IW, Rapp G, Koch MHJ, Oesterhelt D, Dencher NA, Büldt G (1997) The tertiary structural changes in bacteriorhodopsin occur between M states – X-ray diffraction and Fourier transform infrared spectroscopy. EMBO J 16:1484–1491

    PubMed  CAS  Google Scholar 

  • Sass HJ, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406:649–653

    PubMed  CAS  Google Scholar 

  • Sato M, Kanamori T, Kamo N, Demura M, Nitta K (2002) Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. Biochemistry 41:2452–2458

    PubMed  CAS  Google Scholar 

  • Sato Y, Hata M, Neya S, Hoshino T (2005) Computational analysis of the transient movement of helices in sensory rhodopsin II. Protein Sci 14:183–192

    PubMed  CAS  Google Scholar 

  • Scharf B, Engelhard M (1994) Blue halorhodopsin from Natronobacterium pharaonis: Wavelength regulation by anions. Biochemistry 33:6387–6393

    PubMed  CAS  Google Scholar 

  • Scherrer P, Mathew MK, Sperling W, Stoeckenius W (1989) Retinal Isomer Ratio in Dark-Adapted Purple Membrane and Bacteriorhodopsin Monomers. Biochemistry 28:829–834

    PubMed  CAS  Google Scholar 

  • Schilde C (1968) Rapid photoelectric effect in the algae Acetabularia. Z Naturforsch B 23:1369–1376

    PubMed  CAS  Google Scholar 

  • Schmies G, Lüttenberg B, Chizhov I, Engelhard M, Becker A, Bamberg E (2000) Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis: Light-activated proton transfer reactions. Biophys J 78:967–976

    Article  PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    PubMed  CAS  Google Scholar 

  • Schobert B, Brown LS, Lanyi JK (2003) Crystallographic Structures of the M and N Intermediates of Bacteriorhodopsin: Assembly of a Hydrogen-bonded Chain of Water Molecules Between Asp-96 and the Retinal Schiff Base. J Mol Biol 330:553–570

    PubMed  CAS  Google Scholar 

  • Schroll C, Riemensperger T, Bucher D, Ehmer J, Voller T, Erbguth K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A (2006) Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Curr Biol 16:1741–1747

    PubMed  CAS  Google Scholar 

  • Schweiger U, Tittor J, Oesterhelt D (1994) Bacteriorhodopsin can function without a covalent linkage between retinal and protein. Biochemistry 33:535–541

    PubMed  CAS  Google Scholar 

  • Seidel R, Scharf B, Gautel M, Kleine K, Oesterhelt D, Engelhard M (1995) The primary structure of sensory rhodopsin II: A member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci USA 92:3036–3040

    PubMed  CAS  Google Scholar 

  • Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    PubMed  CAS  Google Scholar 

  • Siebert F (1990) Resonance raman and infrared difference spectroscopy of retinal pigments. Meth Enzymol 189:123–137

    PubMed  CAS  Google Scholar 

  • Siebert F, Mäntele W, Kreutz W (1982) Evidence for the Protonation of 2 Internal Carboxylic Groups During the Photocycle of Bacteriorhodopsin – Investigation by Kinetic Infrared-Spectroscopy. FEBS Lett 141:82–87

    CAS  Google Scholar 

  • Sineshchekov OA, Govorunova EG (2001) Rhodopsin receptors of phototaxis in green flagellate algaee. Biochemistry (Moscow) 66:1300–1310

    CAS  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Jung K-H, Zauner S, Maier UG, Spudich JL (2005a) Rhodopsin-Mediated Photoreception in Cryptophyte Flagellates. Biophys J 89:4310–4319

    PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Spudich JL (2004) Light-induced intramolecular charge movements in microbial rhodopsins in intact E. coli cells. Photochem Photobiol Sci 3:548–554

    PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL (2005b) Photochromicity of Anabaena Sensory Rhodopsin, an Atypical Microbial Receptor with a cis-Retinal Light-adapted Form. J Biol Chem 280:14663–14668

    PubMed  CAS  Google Scholar 

  • Sperling W, Schimz A (1980) Photosensory retinal pigments in Halobacterium halobium. Biophys Struct Mech 6:165–169

    PubMed  CAS  Google Scholar 

  • Spudich EN, Spudich JL (1982) Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Proc Natl Acad Sci USA 79:4308–4312

    PubMed  CAS  Google Scholar 

  • Spudich EN, Sundberg SA, Manor D, Spudich JL (1986) Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins 1:239–246

    PubMed  CAS  Google Scholar 

  • Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513

    PubMed  CAS  Google Scholar 

  • Spudich JL, Luecke H (2002) Sensory rhodopsin II: functional insights from structure. Curr Opin Struc Biol 12:540–546

    CAS  Google Scholar 

  • Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: Structures and functions from Archaea to Humans. Annu Rev Cell Dev Biol 16:365–392

    PubMed  CAS  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    PubMed  CAS  Google Scholar 

  • Spudich JL, Stoeckenius W (1979) Photosensory and Chemosensory Behaviour of Halobacterium Halobium. Photobiochem Photobiophys 1:43–53

    CAS  Google Scholar 

  • Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer M, Plato M, Möbius K (2000) High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta 1457:253–262

    PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-Component Signal Transduction. Annu Rev Biochem 69:183–215

    PubMed  CAS  Google Scholar 

  • Stoeckenius W, Lozier RH (1974) Light energy conversion in Halobacterium halobium. J Supramolec Struct 2:769–774

    CAS  Google Scholar 

  • Subramaniam S, Gerstein M, Oesterhelt D, Henderson R (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 12:1–8

    PubMed  CAS  Google Scholar 

  • Subramaniam S, Henderson R (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406:653–657

    PubMed  CAS  Google Scholar 

  • Subramaniam S, Hirai T, Henderson R (2002) From structure to mechanism: electron crystallographic studies of bacteriorhodopsin. Philos Trans Royal Soc A 360:859–874

    CAS  Google Scholar 

  • Subramaniam S, Lindahl I, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161

    PubMed  CAS  Google Scholar 

  • Sudo Y, Furutani Y, Spudich JL, Kandori H (2007) Early Photocycle Structural Changes in a Bacteriorhodopsin Mutant Engineered to Transmit Photosensory Signals. J Biol Chem 282:15550–15558

    PubMed  CAS  Google Scholar 

  • Sudo Y, Iwamoto M, Shimono K, Kamo N (2002) Tyr-199 and Charged Residues of pharaonis Phoborhodopsin Are Important for the Interaction with its Transducer. Biophys J 83:427–432

    PubMed  CAS  Google Scholar 

  • Sudo Y, Spudich JL (2006) Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. PNAS 103:16129–16134

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tomioka H, Kamo N, Kobatake Y (1985) A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiol Lett 28:161–164

    CAS  Google Scholar 

  • Takeda K, Matsui Y, Kamiya N, Adachi S, Okumura H, Kouyama T (2004) Crystal structure of the M intermediate of bacteriorhodopsin: Allosteric structural changes mediated by sliding movement of a transmembrane helix. J Mol Biol 341:1023–1037

    PubMed  CAS  Google Scholar 

  • Tittor J, Haupts U, Haupts C, Oesterhelt D, Becker A, Bamberg E (1997) Chloride and proton transport in bacteriorhodopsin mutant D85T – different modes of ion translocation in a retinal protein. J Mol Biol 271:405–416

    PubMed  CAS  Google Scholar 

  • Trivedi VD, Spudich JL (2003) Photostimulation of a sensory rhodopsin II/HtrII/Tsr fusion chimera activates CheA-autophosphorylation and CheY-phosphotransfer in vitro. Biochemistry 42:13887–13892

    PubMed  CAS  Google Scholar 

  • Tsuda M, Hazemoto N, Kondo M, Kamo N, Kobatake Y, Terayama Y (1982) Two photocycles in halobacterium halobium that lacks bacteriorhodopsin. Biochem Biophys Res Commun 108:970–976

    PubMed  CAS  Google Scholar 

  • Tsunoda SP, Ewers D, Gazzarrini S, Moroni A, Gradmann D, Hegemann P (2006) H+-Pumping Rhodopsin from the Marine Algae Acetabularia. Biophys J 91:1471–1479

    PubMed  CAS  Google Scholar 

  • Váró G, Lanyi JK (1991a) Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Biochemistry 30:5008–5015

    PubMed  Google Scholar 

  • Váró G, Lanyi JK (1991b) Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry 30:5016–5022

    PubMed  Google Scholar 

  • Váró G, Lanyi JK (1990) Pathways of the rise and decay of the M photointermediate(s) of bacteriorhodopsin. Biochemistry 29:2241–2250

    PubMed  Google Scholar 

  • Váró G, Zimányi L, Fan X, Sun L, Needleman R, Lanyi JK (1995) Photocycle of Halorhodopsin from Halobacterium salinarium. Biophys J 68:2062–2072

    PubMed  Google Scholar 

  • Venter JC, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Vogeley L, Luecke H (2006) Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer. Acta Crystallogr F 62:388–391

    Google Scholar 

  • Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 Å. Science 306:1390–1393

    PubMed  CAS  Google Scholar 

  • Vogeley L, Trivedi VD, Sineshchekov OA, Spudich EN, Spudich JL, Luecke H (2007) Crystal Structure of the Anabaena Sensory Rhodopsin Transducer. J Mol Biol 367:741–751

    PubMed  CAS  Google Scholar 

  • Vonck J (1996) A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: Part of the F helix tilts in the M to N transition. Biochemistry 35:5870–5878

    PubMed  CAS  Google Scholar 

  • Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci USA 104:8143–8148

    PubMed  CAS  Google Scholar 

  • Wang WW, Sineshchekov OA, Spudich EN, Spudich JL (2003) Spectroscopic and Photochemical Characterization of a Deep Ocean Proteorhodopsin. J Biol Chem 278:33985–33991

    PubMed  CAS  Google Scholar 

  • Waschuk SA, Bezerra AG Jr, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: Bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883

    PubMed  CAS  Google Scholar 

  • Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ (2000) Time-resolved detection of transient movement of helix F in spin- labelled pharaonis sensory rhodopsin II. J Mol Biol 301:881–891

    PubMed  CAS  Google Scholar 

  • Wegener AA, Klare JP, Engelhard M, Steinhoff HJ (2001) Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319

    PubMed  CAS  Google Scholar 

  • Wolff EK, Bogomolni RA, Scherrer P, Hess B, Stoeckenius W (1986) Color discrimination in halobacteria: Spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc Natl Acad Sci USA 83:7272–7276

    PubMed  CAS  Google Scholar 

  • Xie AH, Nagle JF, Lozier RH (1987) Flash spectroscopy of purple membrane. Biophys J 51:627–635

    PubMed  CAS  Google Scholar 

  • Yan B, Takahashi T, Johnson R, Spudich JL (1991) Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: The case of sensory rhodopsin II. Biochemistry 30:10686–10692

    PubMed  CAS  Google Scholar 

  • Yang C-S, Spudich JL (2001) Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer. Biochemistry 40:14207–14214

    PubMed  CAS  Google Scholar 

  • Yao VJ, Spudich JL (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci USA 89:11915–11919

    PubMed  CAS  Google Scholar 

  • Yoshida H, Sudo Y, Shimono K, Iwamoto M, Kamo N (2004) Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-reagent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II). Photochem Photobiol Sci 3:537–542

    PubMed  CAS  Google Scholar 

  • Zhai Y, Heijne WHM, Smith DW, Saier MH Jr (2001) Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. BBA-Biomembranes 1511:206–223

    PubMed  CAS  Google Scholar 

  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    PubMed  CAS  Google Scholar 

  • Zhang W, Brooun A, Mueller MM, Alam M (1996) The primary structures of the Archaeon Halobacterium Salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci USA 93:8230–8235

    PubMed  CAS  Google Scholar 

  • Zimányi L, Lanyi JK (1997) Fourier transform Raman study of retinal isomeric composition and equilibration in halorhodopsin. J Phys Chem B 101:1930–1933

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Engelhard .

Editor information

Günter Schäfer Harvey S. Penefsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klare, J.P., Chizhov, I., Engelhard, M. (2007). Microbial Rhodopsins: Scaffolds for Ion Pumps, Channels, and Sensors. In: Schäfer, G., Penefsky, H.S. (eds) Bioenergetics. Results and Problems in Cell Differentiation, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_041

Download citation

Publish with us

Policies and ethics