Skip to main content
Log in

PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The PsbS protein of photosystem II is necessary for the development of energy-dependent quenching of chlorophyll (Chl) fluorescence (qE), and PsbS-deficient Arabidopsis plant leaves failed to show qE-specific changes in the steady-state 77 K fluorescence emission spectra observed in wild-type leaves. The difference spectrum between the quenched and un-quenched states showed a negative peak at 682 nm. Although the level of qE development in the zeaxanthin-less npq1-2 mutant plants, which lacked violaxanthin de-epoxidase enzyme, was only half that of wild type, there were no noticeable changes in this qE-dependent difference spectrum. This zeaxanthin-independent ΔF682 signal was not dependent on state transition, and the signal was not due to photobleaching of pigments either. These results suggest that ΔF682 signal is formed due to PsbS-specific conformational changes in the quenching site of qE and is a new signature of qE generation in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Horton, A. V. Ruban and R. G. Walter, Regulation of light harvesting in green plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47, 655–684.

    Article  CAS  PubMed  Google Scholar 

  2. B. Demmig-Adams, K. Winter, A. Krüger, F.-C. Czygan, Light response of carbon dioxide assimilation dissipation of excess excitation energy and zeaxanthin content of sun and shade leaves, Plant Physiol., 1989, 90, 881–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. Horton and A. Hague, Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts: IV. Resolution, of non-photochemical quenching, Biochim. Biophys. Acta, Bioenerg., 1988, 932, 107–115.

    Article  CAS  Google Scholar 

  4. P. Müller, X.-P. Li and K. K. Niyogi, Non-photochemical quenching. A response to excess light energy, Plant Physiol., 2001, 125, 1558–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  5. X.-P. Li, O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson and K. K. Niyogi, A pigment-binding protein essential for regulation of photosynthetic light harvesting, Nature, 2000, 403, 391–395.

    Article  CAS  PubMed  Google Scholar 

  6. A. V. Ruban, A. J. Young and P. Horton, Induction of non-photochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light harvesting system of Photosystem II in vivo, Plant Physiol., 1993, 102, 741–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. M. Gilmore, T. L. Hazlett, Govindjee, Xanthophyll cycle-dependent quenching of photosystem II chlorophyll fluorescence: Formation of a quenching complex with a short fluorescence lifetime, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2273–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. K. Ahn, T. J. Avenson, M. Ballottari, Y.-C. Cheng, K. K. Niyogi, R. Bassi and G. R. Fleming, Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein, Science, 2008, 320, 794–797.

    Article  CAS  PubMed  Google Scholar 

  9. N. E. Holt, D. Zigmantas, L. Valkunas, X.-P. Li, K. K. Niyogi and G. R. Fleming, Carotenoid cation formation and the regulation of photosynthetic light harvesting, Science, 2005, 307, 433–436.

    Article  CAS  PubMed  Google Scholar 

  10. A. V. Ruban, R. Berera, C. Ilioaia, I. H. M. van Stokkum, J. T. M. Kennis, A. A. Pascal, H. van Amerongen, B. Robert, P. Horton, R. van Grondelle, Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature, 2007, 450, 575–578.

    Article  CAS  PubMed  Google Scholar 

  11. P. Horton, M. Wentworth and A. V. Ruban, Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching, FEBS Lett., 2005, 579, 4201–4206.

    Article  CAS  PubMed  Google Scholar 

  12. A. Z. Kiss, A. V. Ruban and P. Horton, (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes, J. Biol. Chem., 2008, 283, 3972–3978.

    Article  CAS  PubMed  Google Scholar 

  13. N. Betterle, M. Ballottari, S. Zorzan, S. de Bianchi, S. Cazzaniga, L. Dall’Osto, T. Morosinotto and R. Bassi, (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction, J. Biol. Chem., 2009, 284, 15255–15266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. B. Demmig-Adams, Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin, Biochim. Biophys. Acta, Bioenerg., 1990, 1020, 1–24.

    Article  CAS  Google Scholar 

  15. A. V. Ruban, P. J. Lee, M. Wentworth, A. J. Young and P. Horton, Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes, J. Biol. Chem., 1999, 274, 10458–10465.

    Article  CAS  PubMed  Google Scholar 

  16. M. P. Johnson, M. L. Pérez-Bueno, A. Zia, P. Horton and A. V. Ruban, The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis, Plant Physiol., 2009, 149, 1061–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Miloslavina, A. Wehner, P. H. Lambrev, E. Wientjes, M. Reus, G. Garab, R. Croce and A. R. Holzwarth, Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching, FEBS Lett., 2008, 582, 3625–3631.

    Article  CAS  PubMed  Google Scholar 

  18. P. H. Lambrev, T. Tsonev, V. Velikova, K. Georgieva, M. D. Lambreva, I. Yordanov, L. Kovács and G. Garab, Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature, Photosynth. Res., 2007, 94, 321–332.

    Article  CAS  PubMed  Google Scholar 

  19. M. Wentworth, A. V. Ruban and P. Horton, Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light harvesting complexes, J. Biol. Chem., 2003, 278, 21845–21850.

    Article  CAS  PubMed  Google Scholar 

  20. M. Mozzo, F. Passarini, R. Bassi, H. van Amerongen and R. Croce, Photoprotection in higher plants: The putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II, Biochim. Biophys. Acta, Bioenerg., 2008, 1777, 1263–1267.

    Article  CAS  Google Scholar 

  21. P. Horton and A. V. Ruban, The role of LHCII in energy quenching, in Photoinhibition of Photosynthesis–from molecular mechanisms to the field, ed. N. R. Baker and J. R. Bowyer, BIOS Scientific, Oxford, 1994, pp. 111–125.

    Google Scholar 

  22. G. Finazzi, G. N. Johnson, L. Dall’Osto, P. Joliot, F.-A. Wollman and R. Bassi, A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 12375–12380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. S. Zulfugarov, O.-K. Ham, S. R. Mishra, J.-Y. Kim, K. Nath, H.-Y. Koo, Y.-H. Moon, H.-S. Kim, G. An, C.-H. Lee, Dependence of reaction center-type of energy-dependent quenching on antenna size of photosystem II, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 773–780.

    Article  CAS  Google Scholar 

  24. E. Delphin, J.-C. Duval, A.-L. Etienne and D. Kirilovsky, State transitions orΔpH-Dependent Quenching of Photosystem II Fluorescence in Red Algae, Biochemistry, 1996, 35, 9435–9445.

    Article  CAS  PubMed  Google Scholar 

  25. E. Delphin, J.-C. Duval, A.-L. Etienne and D. Kirilovsky, ΔpH-Dependent Photosystem II Fluorescence Quenching Induced by Saturating, Multiturnover Pulses in Red Algae., Plant Physiol., 1998, 118, 103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Shen and W. F. J. Vermaas, Chlorophyll in a Synechocystis sp. PCC 6803 mutant without photosystem I and photosystem II core complexes. Evidence for peripheral antenna chlorophylls in cyanobacteria, J. Biol. Chem., 1994, 269, 13904–13910.

    Article  CAS  PubMed  Google Scholar 

  27. Govindjee, Sixty-three years since Kautsky: chlorophyll a fluorescence, Aust. J. Plant Physiol., 1995, 22, 131–160.

    CAS  Google Scholar 

  28. K. K. Niyogi, A. R. Grossman, O. Björkman, Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion, Plant Cell, 1998, 10, 1121–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Bellafiore, F. Barneche, G. Peltier, J.-D. Rochaix, State transitions and light adaptation require chloroplast thylakoid protein kinase STN7, Nature, 2005, 433, 892–895.

    Article  CAS  PubMed  Google Scholar 

  30. Y.-Z. Ma, N. E. Holt, X.-P. Li, K. K. Niyogi and G. R. Fleming, Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 4377–4382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Krieger and E. Weis, The role of calcium in the pH-dependent control of photosystem II, Photosynth. Res., 1993, 37, 117–130.

    Article  CAS  PubMed  Google Scholar 

  32. P. Dominici, S. Caffarri, F. Armenante, S. Ceoldo, M. Crimi and R. Bassi, Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant, J. Biol. Chem., 2002, 277, 22750–22758.

    Article  CAS  PubMed  Google Scholar 

  33. B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II, Nature, 2005, 438, 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  34. J. B. Arellano, S. Gonzlez-Prez, F. Vacha, T. B. Mel and K. R. Naqvi, Reaction center of photosystem II with no peripheral pigments in D2 allows secondary electron transfer in D1, Biochemistry, 2007, 46, 15027–15032.

    Article  CAS  PubMed  Google Scholar 

  35. N. Kamiya, J.-R. Shen, Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolutions, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 98–103.

    Article  CAS  PubMed  Google Scholar 

  36. K. N. Ferreira, T. M. Iverson, K. Maghlaou, J. Barber and S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science, 2004, 303, 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  37. A. Telfer, S. Dhami, S. M. Bishop, D. Phillips and J. Barber, Beta-carotene quenches singlet oxygen formed by isolated photosystem II reaction centers, Biochemistry, 1994, 33, 14469–14474.

    Article  CAS  PubMed  Google Scholar 

  38. A. Pascal, A. Telfer, J. Barber and B. Robert, Fourier-transform resonance Raman spectra of cation carotenoid in photosystem II reaction centres, FEBS Lett., 1999, 453, 11–14.

    Article  CAS  PubMed  Google Scholar 

  39. C. A. Tracewell, J. S. Vrettos, J. A. Bautista, H. A. Frank and G. W. Brudvig, Carotenoid photooxidation in photosystem II, Arch. Biochem. Biophys., 2001, 385, 61–69.

    Article  CAS  PubMed  Google Scholar 

  40. P. Fromme, J. Kern, B. Loll, J. Biesadka, W. Saenger, H. T. Witt, N. Krauss and A. Zouni, Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II, Philos. Trans. R. Soc. London, Ser. B, 2002, 357, 1337–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. I. Allakhverdiev, V. V. Klimov and R. Carpentier, Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound, Biochemistry, 1997, 36, 4149–4154.

    Article  CAS  PubMed  Google Scholar 

  42. H. Ishikita, B. Loll, J. Biesiadka, J. Kern, K. D. Irrgang, A. Zouni, W. Saenger and E. W. Knapp, Function of two β-carotenes near the D1 and D2 proteins in photosystem II dimmers, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 79–87.

    Article  CAS  Google Scholar 

  43. M. Frenkel, C. Külheim, H. J. Jänkänpää, O. Skogström, L. Dall’Osto, J. Ågren, R. Bassi, T. Moritz, J. Moen and S. Jansson, Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming, BMC Plant Biol., 2009, 9, 12, DOI: 10.1186/1471-2229-9-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. H. Aronsson, M. A. Schottler, A. A. Kelly, C. Sundqvist, P. Dormann, S. Kazim and P. Jarvis, Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energyzation and photoprotection in leaves, Plant Physiol., 2008, 148, 580–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. G. Ivanov, P. V. Sane, M. Krol, G. R. Gray, A. Balseris, L. V. Savitch, G. Öquist, N. P. A. Hüner, Acclimation to temperature and irradiance modulates PSII charge recombination, FEBS Lett., 2006, 580, 2797–2802.

    Article  CAS  PubMed  Google Scholar 

  46. A. G. Ivanov, V. Harry, P. V. Sane, G. Öqust and N. P. A. Huner, Reaction centre quenching of excess light energy and photoprotection of photosystem II, J. Plant Biol., 2008, 51, 85–96.

    Article  CAS  Google Scholar 

  47. S. Santabarbara, K. V. Neverov, F. M. Garlaschi, G. Zucchelli and R. C. Jennings, Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids, FEBS Lett., 2001, 491, 109–113.

    Article  CAS  PubMed  Google Scholar 

  48. P. H. Lambrev, M. Nilkens, Y. Miloslavina, P. Jahns and A. R. Holzwarth, Kinetic and spectral resolution of multiple non-photochemical quenching components in Arabidopsis leaves, Plant Physiol., 2010, 152, 1611–1624.

    Article  CAS  PubMed  Google Scholar 

  49. A. M. Gilmore, V. P. Shinkarev, T. L. Hazlett, Govindjee, Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distribution and intensity in thylakoids, Biochemistry, 1998, 37, 13582–13593.

    Article  CAS  PubMed  Google Scholar 

  50. C. Lunde, P. E. Jensen, A. Haldrup, J. Knoetzel and H. V. Scheller, The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis, Nature, 2000, 408, 613–615.

    Article  CAS  PubMed  Google Scholar 

  51. J.-H. Kim, S.-J. Kim, S. H. Cho, W. S. Chow, C.-H. Lee, Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities, Physiol. Plant., 2005, 123, 100–107.

    Article  CAS  Google Scholar 

  52. R. J. Porra, W. A. Thompson and P. E. Kriedemann, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b with four different solvents: verification of the concentration of chlorophyll by atomic absorption spectroscopy, Biochim. Biophys. Acta, Bioenerg., 1989, 975, 384–394.

    Article  CAS  Google Scholar 

  53. A. M. Gilmore and H. Y. Yamamoto, Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column, J. Chromatogr., A, 1991, 543, 137–145.

    Article  CAS  Google Scholar 

  54. Y. R. Moon, J.-H. Kim, M. H. Lee, J.-S. Kim and B. Y. Chung, Thermal dissipation of excess light in Arabidopsis leaves is inhibited after gamma-irradiation, J. Plant Biol., 2008, 51, 52–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Hwan Lee.

Additional information

Electronic supplementary information (ESI) available: The 77 K difference fluorescence emission spectra (quenched state minus unquenched state) normalized at 750 nm; the slow chlorophyll fluorescence induction curves of the leaves; the 77 K un-normalized fluorescence emission spectra of thylakoids. See DOI: 10.1039/b9pp00132h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulfugarov, I.S., Tovuu, A., Dogsom, B. et al. PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants. Photochem Photobiol Sci 9, 697–703 (2010). https://doi.org/10.1039/b9pp00132h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00132h

Navigation