Skip to main content
Log in

Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The impact of lipophilicity on biological parameters critical to photodynamic efficacy was analyzed for a new generation of trisulfobenzo(mononaphtho)porphyrazines. The porphyrazines were substituted on the naphtho ring with linear alkynyl side chains of various lengths. When compared to the analogous phthalocyanine structures, the added benzo ring in the porphyrazine structures increased the lipophilicity for analogs with short alkynyl chains, while this effect disappeared for analogs with longer side chains. In aqueous media, the analogous phthalocyanine series showed aggregation tendencies. In contrast, no correlation between aggregate formation and the length of the alkynyl side chain was evident in the porphyrazine series. At low concentrations, the length of the side chain did not affect cell uptake, while phototoxicity towards EMT-6 mouse tumour cells showed a parabolic relationship, where the hexynyl derivative showed the highest activity. The trisulfonated porphyrazines localized at intracellular organelles, plasma and perinuclear membranes, but could not be found in the nucleus. Total cell uptake of dye did not correlate with phototoxicity, suggesting that localization in certain intracellular organelles, and distribution into critical intracellular sites are important determinants of their photodynamic activity. The hexynyl trisulfonated zinc porphyrazine derivative (ZnNPcS3C6) showed the strongest in vitro photodynamic activity and therefore was further studied in an EMT-6 mouse tumour model. An i.v. dose of 1 μmole of ZnNPS3C6 per kg, followed 24 h later by activation with light, induced 100% tumour necrosis within 24 h post-PDT. This treatment delayed tumour volume doubling time from 5 days to >2 weeks, and gave 41% tumour cure >3 weeks post-PDT. Applying the same light dose fractionated (5 min on, 2 min off), further improved tumour response, leading to a doubling time of 26 days and a 73% tumour cure. At the administered 1 μmol kg−1 dye dose, no skin phototoxicity was observed and >90% blood clearance was observed within 5 h post-injection. Compared to the analogous trisulfo monohexynyl zinc phthalocyanine, the new trisulfobenzo(mononaphthohexynyl)porphyrazine provided a broader range of excitation wavelengths, and improved photodynamic potency, while apparently being free of unwanted systemic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Margaron, M. J. Grégoire, V. Scaanar, H. Ali, J. E. van Lier, Structure-photodynamic activity relationships of a series of 4-substituted zinc phthalocyanines, Photochem. Photobiol., 1996, 63, 217–223.

    Article  CAS  Google Scholar 

  2. C. M. Allen, R. Langlois, W. M. Sharman, C. La Madeleine, J. E. van Lier, Photodynamic properties of amphiphilic derivatives of aluminium tetrasulfophthalocyanine, Photochem. Photobiol., 2002, 76, 208–216.

    Article  CAS  Google Scholar 

  3. N. Cauchon, H. Tian, R. Langlois, C. La Madeleine, S. Martin, H. Ali, D. Hunting, J. E. van Lier, Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines, Bioconjugate Chem., 2005, 16, 80–89.

    Article  CAS  Google Scholar 

  4. E. Ben-Hur, and W. S. Chan, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, California, 2003, vol. 19, ch. 117, pp 1–30.

  5. H. Ali, J. E. van lier, Metal commplexes as photo-and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450.

    Article  CAS  Google Scholar 

  6. S. B. Brown, E. A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  Google Scholar 

  7. W. M. Sharman, C. M. Allen, J. E. van Lier, Photodynamic therapeutics: Basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  Google Scholar 

  8. E. J. Dennis, G. J. Dolmans, D. Fukumura, R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  Google Scholar 

  9. A. Juarranz, P. Jaen, F. Sanz-Rodriguez, J. Cuevas, S. Gonzalez, Photodynamic therapy of cancer, Basic principles and applications, Clin. Transl. Oncol., 2008, 10, 148–154.

    Article  CAS  Google Scholar 

  10. B. W. Henderson, T. M. Busch, J. W. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  Google Scholar 

  11. J. H. Woodhams, A. J. MacRobert, S. G. Bown, The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry, Photochem. Photobiol. Sci., 2007, 6, 1246–1256.

    Article  CAS  Google Scholar 

  12. W. M. Sharman, C. M. Allen, J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Methods Enzymol., 2000, 319, 376–400.

    Article  CAS  Google Scholar 

  13. C. J. Gomer, A. Ferrario, M. Luna, N. Rucker, S. Wong, Photodynamic therapy: combined modality approaches targeting the tumour microenvironment, Lasers Surg. Med., 2006, 38, 516–521.

    Article  Google Scholar 

  14. W. S. Chan, N. Brasseur, C. La Madeleine, J. E. van Lier, Evidence for different mechanisms of EMT-6 tumour necrosis by photodynamic therapy with disulfonated aluminium phthalocyanine or photofrin: tumour cell survival and blood flow, Anticancer Res., 1996, 16, 1887–1892.

    CAS  PubMed  Google Scholar 

  15. V. H. Fingar, T. J. Wieman, P. S. Karavolos, K. W. Doak, R. Ouellet, J. E. van Lier, The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumour response, Photochem. Photobiol., 1993, 58, 251–258.

    Article  CAS  Google Scholar 

  16. N. Cauchon, M. Nader, G. Bkaily, J. E. van Lier, D. Hunting, Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage, Photochem. Photobiol., 2006, 82, 1712–1720.

    Article  CAS  Google Scholar 

  17. J. E. van Lier, H. Tian, H. Ali, N. Cauchon, H. M. Hasséssian, Trisulfonated porphyrazines: new photosensitizers for the treatment of retinal and sub-retinal edema, J. Med. Chem., 2009, 52, 4107–4110.

    Article  Google Scholar 

  18. R. Langlois, H. Ali, N. Brasseur, J. R. Wagner, J. E. van Lier, Biological activities ofphthalocyanines-IV. Type, II sensitized phtotooxidation of l-tryptophan and cholesterol by sulfonated metallophthalocyanines, Photochem. Photobiol., 1986, 44, 117–123.

    Article  CAS  Google Scholar 

  19. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254.

    Article  CAS  Google Scholar 

  20. C. M. Allen, R. Langlois, W. M. Sharman, C. La Madeleine, J. E. van Lier, Photodynamic properties of amphiphilic derivatives of aluminium tetrasulfophthalocyanine, Photochem. Photobiol., 2002, 76, 208–216.

    Article  CAS  Google Scholar 

  21. H. Tada, O. Shiho, K. Kuroshima, M. Koyama, K. Tsukamoto, An improved colorimetric assay for interleukin 2, J. Immunol. Methods, 1986, 93, 157–165.

    Article  CAS  Google Scholar 

  22. D. P. Valenzeno, J. P. Pooler, Cell membrane photomodification: relative effectiveness of halogenated fluoresceins for photohemolysis, Photochem. Photobiol., 1982, 35, 343–350.

    Article  CAS  Google Scholar 

  23. M. S. O’Reilly, L. Holmgren, C. Chen, J. Folkman, Angiostatin induces and sustains dormancy of human primary tumors in mice, Nat. Med., 1996, 2, 689–692.

    Article  Google Scholar 

  24. Q. Peng, T. Warloe, J. Moan, A. Godal, F. Apricena, K. E. Giercksky, J. M. Nesland, Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts, Cancer Res., 2001, 61, 5824–32.

    CAS  PubMed  Google Scholar 

  25. P. S. Thong, F. Watt, M. Q. Ren, P. H. Tan, K. C. Soo, M. Olivo, Hypericin-photodynamic therapy (PDT) using an alternative treatment regime suitable for multi-fraction PDT, J. Photochem. Photobiol., B, 2006, 82, 1–8.

    Article  CAS  Google Scholar 

  26. B. W. Pogue, T. Hasan, A theoretical study of light fractionation and dose-rate effects in photodynamic therapy, Radiat. Res., 1997, 147, 551–559.

    Article  CAS  Google Scholar 

  27. A. Curnow, J. C. Haller, S. G. Bown, Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon. Comparison of continuous and fractionated light regimes, J. Photochem. Photobiol., B, 2000, 58, 149–155.

    Article  CAS  Google Scholar 

  28. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 296–303.

    Article  CAS  Google Scholar 

  29. D. A. Bellnier, Potentiation of photodynamic therapy in mice with recombinant human tumor necrosis factor-a, J. Photochem. Photobiol., B, 1991, 8, 203–210.

    Article  CAS  Google Scholar 

  30. A. Papoulis, in Probability, Random Variables, and Stochastic Processes, 2nd edn, McGraw-Hill, New York, 1984, p. 104.

    Google Scholar 

  31. R. W. Redmond, J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  Google Scholar 

  32. Z. Chen, A. Lohr, C. R. Saha-Möller, F. Würthner, Self-assembled p-stacks of functional dyes in solution: structural and thermodynamic features, Chem. Soc. Rev., 2009, 38, 564–584.

    Article  CAS  Google Scholar 

  33. J. D. Spike, J. C. Bommer, Zinc phthalocyanine as a photodynamic sensitizer for biomolecules, Int. J. Radiat. Biol., 1986, 50, 41–45.

    Google Scholar 

  34. D. Philips, Chemical mechanisms in photodynamic therapy with phthalocyanines, Prog. Reaction Kinet., 1997, 22, 175–300.

    Google Scholar 

  35. M. Korbelick, and I. Cecic, Mechanism of Tumor Destruction by photodynamic therapy,, in Handbook of Photochemistry and Photobiology, ed. H. S. Nalwa, American Scientific Publishers, Stevenson Ranch, CA, 2003, vol. 4, ch. 2, pp 39–77.

    Google Scholar 

  36. N. L. Oleinick, R. L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  Google Scholar 

  37. C. Pavani, A. F. Uchoa, C. S. Oliveira, Y. Iamamoto, M. S. Baptista, Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers, Photochem. Photobiol. Sci., 2009, 8, 233–40.

    Article  CAS  Google Scholar 

  38. B. Li, E. H. Moriyama, F. Li, M. T. Jarvi, C. Allen, B. C. Wilson, Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy, Photochem. Photobiol., 2007, 83, 1505–1512.

    Article  CAS  Google Scholar 

  39. N. Nishiyama, H. R. Stapert, G. D. Zhang, D. Takasu, D. L. Jiang, T. Nagano, T. Aida, K. Kataoka, Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy, Bioconjugate Chem., 2003, 14, 58–66.

    Article  CAS  Google Scholar 

  40. S. M. Ali, M. Olivo, Biodistribution and subcellular localization of hypericin and its role in PDT induced apoptosis in cancer cells, Int. J. Oncol., 2002, 21, 531–540.

    CAS  PubMed  Google Scholar 

  41. Y. J. Hsieh, C. C. Wu, C. J. Chang, J. S. Yu, Subcellular localization of photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: When plasma membranes are the main targets, J. Cell. Physiol., 2003, 194, 363–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan E. van Lier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauchon, N., Ali, H., Hasséssian, H.M. et al. Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer. Photochem Photobiol Sci 9, 331–341 (2010). https://doi.org/10.1039/b9pp00109c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00109c

Navigation