Skip to main content
Log in

UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974–present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCAand FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960–2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/ angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCAand FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and methylation (THM)-pyrolysis-GC-MS. Potentially, the time scale for reconstruction of ozone column thickness and UV-B based on the UAC UV proxy may be decadal, centennial, millennial and possibly billenial. For further development of the UACs and pCA and FA-based UV proxy, it is necessary to obtain the UV dose–response (content of UACs, pCA and FA in sporopollenin and cutin) relationships for validation, based on outdoor UV radiation manipulations experiments with plants, and comparative analysis of stored plants (herbaria) or fossil material of the same or related plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fioletov, G. E. Bodeker, A. J. Miller, R. D. McPeters, R. Stolarski, Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000 J. Geophys. Res. 2002 107 4647.

    Article  CAS  Google Scholar 

  2. J. C. Farman, B. G. Gardiner, J. D. Shanklin, Large Losses of Total Ozone in Antarctica Reveal Seasonal ClOx/NOx Interaction Nature 1985 315 207–210.

    Article  CAS  Google Scholar 

  3. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Bjorn, M. Ilyas, Changes in biologically-active ultraviolet radiation reaching the Earth’s surface Photochem. Photobiol. Sci. 2007 6 218–231.

    Article  CAS  PubMed  Google Scholar 

  4. A. Andrady, et al., Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2008, United Nations Environment Programme, Environmental Effectts Assessment Panel Photochem. Photobiol. Sci. 2009 8 13–22.

    Article  PubMed  Google Scholar 

  5. J. Rozema, A. J. Noordijk, R. A. Broekman, A. van Beem, B. M. Meijkamp, N. V. J. de Bakker, J. W. M. van de Staaij, M. Stroetenga, S. J. P. Bohncke, M. Konert, S. Kars, H. Peat, R. I. L. Smith, P. Convey, (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B–A new proxy for the reconstruction of past solar UV-B? Plant Ecol. 2001 154 9–26.

    Article  Google Scholar 

  6. J. Rozema, R. A. Broekman, P. Blokker, B. B. Meijkamp, N. de Bakker, J. van de Staaij, A. van Beem, F. Ariese, S. M. Kars, UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B level J. Photochem. Photobiol., B 2001 62 108–117.

    Article  CAS  Google Scholar 

  7. P. Blokker, D. Yeloff, P. Boelen, R. A. Broekman, J. Rozema, Development of a Proxy for Past Surface UV-B Irradiation: A Thermally Assisted Hydrolysis and Methylation py-GC/MS Method for the Analysis of Pollen and Spores Anal. Chem. 2005 77 6026–6031.

    Article  CAS  PubMed  Google Scholar 

  8. P. Blokker, P. Boelen, R. Broekman, J. Rozema, The Occurrence of p-coumaric Acid and Ferulic Acid in Fossil Plant Materials and their Use as UV-proxy Plant Ecol. 2006 182 197–207.

    Google Scholar 

  9. L. O. Bjorn, R. L. McKenzie, Attempts to probe the ozone layer and the ultraviolet-B levels of the past Ambio 2007 36 366–371.

    Article  PubMed  Google Scholar 

  10. J. S. Watson, M. A. Sephton, S. V. Sephton, S. Self, W. T. Fraser, B. H. Lomax, I. Gilmour, C. H. Wellman, D. J. Beerling, Rapid determination of sporechemistry using thermochemolysis gaschromatography-massspectrometry and micro-Fourier transform infrared spectroscopy Photochem. Photobiol. Sci. 2007 6 689–694.

    Article  CAS  PubMed  Google Scholar 

  11. B. H. Lomax, W. T. Fraser, M. A. Sephton, T. V. Callaghan, S. Self, M. Harfoot, J. A. Pyle, C. H. Wellman, D. J. Beerling, Plant spore walls as a record of long-term changes in ultraviolet-B radiation Nat. Geosci. 2008 1 592–596.

    Article  CAS  Google Scholar 

  12. K. Wehling, C. Niester, J. J. Boon, M. T. M. Willemse, R. Wiermann, p-Coumaric acid—a monomer in the sporopollenin skeleton Planta 1989 179 376–380.

    Article  CAS  PubMed  Google Scholar 

  13. H. Bubert, J. Lambert, S. Steuernagel, F. Ahlers, R. Wiermann, Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis Z. Naturforsch., C: Biosci. 2002 57 1035–1041.

    Article  CAS  Google Scholar 

  14. F. Ahlers, I. Thom, J. Lambert, R. Kuckuk, W. Rolf, 1H NMR analysis of sporopollenin from Typha angustifolia Phytochemistry 1999 50 1095–1098.

    Article  CAS  Google Scholar 

  15. J. W. de Leeuw, G. J. M. Versteegh, P. F. van Bergen, Biomacromolecules of algae and plants and their fossil analogues Plant Ecol. 2006 182 209–233.

    Article  Google Scholar 

  16. R. Wiermann, F. Ahlers and I. Schmitz-Thom, Sporopollenin, in Biopolymers, vol. 1. Lignin humic substances and coal ed. A. Steinbüchel, Wiley, New York, NY, USA, 2001, pp. 209–227.

    Google Scholar 

  17. S. D. Flint, M. M. Caldwell, A biological spectral weighting function for ozone depletion research with higher plants Physiol. Plant. 2003 117 137–144.

    Article  CAS  Google Scholar 

  18. R. A. Dixon, N. L. Paiva, Stress-Induced Phenylpropanoid Metabolism Plant Cell 1995 7 1085–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. Poole, P. Bergen, Physiognomic and Chemical Characters in Wood as Palaeoclimate Proxies Plant Ecol. 2006 182 175–195.

    Google Scholar 

  20. V. V. Zuev, Reconstruction and prediction of long-period variations of the ozonosphere using ozonometric and dendrochronological data Int. J. Remote Sens. 2005 26 3631–3639.

    Article  Google Scholar 

  21. J. Rozema, J. van de Staaij, L. O. Björn, M. Caldwell, UV-B as an environmental factor in plant life: stress and regulation Trends Ecol. Evol. 1997 12 22–28.

    Article  CAS  PubMed  Google Scholar 

  22. J. Rozema, L. O. Björn, J. F. Bornman, A. Gaberscik, D. P. Häder, T. Trost, M. Germ, M. Klisch, A. Gröniger, R. P. Sinha, M. Lebert, Y. Y. He, R. Buffoni-Hall, N. V. J. de Bakker, J. van de Staaij, B. B. Meijkamp, The role of UV-B radiation in aquatic and terrestrial ecosystems–an experimental and functional analysis of the evolution of UV-absorbing compounds J. Photochem. Photobiol., B 2002 66 2–12.

    Article  CAS  Google Scholar 

  23. B. B. Meijkamp, R. Aerts, J. W. M. van de Staaij, M. Tosserams, W. H. O. Ernst and J. Rozema, Effects of UV-B on secondary metabolites in plants, in Stratospheric Ozone Depletion; the Effects of UV-B Radiation on Terrestrial Ecosystems ed. J. Rozema, Backhuys, Leiden, 1999, pp. 70–99.

    Google Scholar 

  24. R. Sommaruga, K. Whitehead, J. M. Shick, C. S. Lobban, Mycosporine-like Amino Acids in the Zooxanthella-Ciliate Symbiosis Maristentor dinoferus Protist 2006 157 185–191.

    Article  CAS  PubMed  Google Scholar 

  25. R. Sommaruga, The role of solar UV radiation in the ecology of alpine lakes J. Photochem. Photobiol., B 2001 62 35–42.

    Article  CAS  Google Scholar 

  26. N. V. J. de Bakker, A. P. van Beem, J. W. M. van de Staaij, J. Rozema, R. Aerts, Effects of UV-B radiation on a charophycean alga, Chara aspera Plant Ecol. 2001 154 237–246.

    Article  Google Scholar 

  27. T. B. T. Lam, K. Kadoya, K. Iiyama, Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the [beta]-position, in grass cell walls Phytochemistry 2001 57 987–992.

    Article  CAS  PubMed  Google Scholar 

  28. P. E. Kolattukudy, Biopolyester Membranes of Plants: Cutin and Suberin Science 1980 208 990–1000.

    Article  CAS  PubMed  Google Scholar 

  29. S. M. Demchik, T. A. Day, Effect of Enhanced UV-B Radiation of Pollen Quantity, Quality, and Seed Yield in Brassica rapa (Brassicaceae) Am. J. Bot. 1996 83 573–579.

    Article  Google Scholar 

  30. B. B. Meijkamp, G. Doodeman, J. Rozema, The response of Vicia faba to enhanced UV-B radiation under low and near ambient PAR levels Plant Ecol. 2001 154 135–146.

    Article  Google Scholar 

  31. B. B. Meijkamp, Multilevel UV-B attenuance, morphological and chemical adaptation of Vicia faba to ultraviolet-B radiation, PhD thesis, Vrije Universiteit, Amsterdam, 2006, pp. 168.

    Google Scholar 

  32. R. G. Riley, P. E. Kolattukudy, Evidence for Covalently Attached Para-Coumaric Acid and Ferulic Acid in Cutins and Suberins Plant Physiol. 1975 56 650–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. R. Hemsley and I. Poole, The evolution of plant physiology, Linnean Society Symposium Series. 21. Elsevier, Amsterdam, 2004.

    Google Scholar 

  34. J. Rozema, Stratospheric Ozone Depletion the effects of Enhanced UV-B Radiation on Terrestrial Ecosystems, Backhuys Publishers, Leiden, 1999.

    Google Scholar 

  35. K. J. Willis, J. C. McElwain, The evolution of plants, Oxford University Press, Oxford, 2002.

    Google Scholar 

  36. P. S. Searles, S. D. Flint, M. M. Caldwell, A meta analysis of plant field studies simulating stratospheric ozone depletion Oecologia 2001 127 1–10.

    Article  PubMed  Google Scholar 

  37. P. Boelen, M. K. de Boer, N. V. J. de Bakker, J. Rozema, Outdoor studies on the effects of solar UV-B on bryophytes: Overview and methodology Plant Ecol. 2006 182 137–152.

    Article  Google Scholar 

  38. C. L. Ballaré, M. Cecilia Rousseaux, P. S. Searles, J. G. Zaller, C. V. Giordano, T. Matthew Robson, M. M. Caldwell, O. E. Sala, A. L. Scopel, Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina): An overview of recent progress J. Photochem. Photobiol., B 2001 62 67–77.

    Article  Google Scholar 

  39. K. K. Newsham, P. A. Geissler, M. J. Nicolson, H. J. Peat, R. I. Lewis-Smith, Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort Environ. Exp. Bot. 2005 54 22–32.

    Article  CAS  Google Scholar 

  40. S. A. Robinson, J. D. Turnbull, C. E. Lovelock, Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici Global Change Biol. 2005 11 476–489.

    Article  Google Scholar 

  41. S. D. Flint, P. S. Searles, M. M. Caldwell, Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants Photochem. Photobiol. 2004 79 399–403.

    Article  CAS  PubMed  Google Scholar 

  42. J. Rozema, P. Boelen, P. Blokker, Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview Environ. Pollut. 2005 137 428–442.

    Article  CAS  PubMed  Google Scholar 

  43. E. Verleyen, D. A. Hodgson, K. Sabbe, W. Vyverman, Late Holocene changes in ultraviolet radiation penetration recorded in an East Antarctic lake J. Paleolimnol. 2005 34 191–202.

    Article  Google Scholar 

  44. D. A. Hodgson, W. Vyverman, E. Verleyen, P. R. Leavitt, K. Sabbe, A. H. Squier, B. J. Keely, Late Pleistocene record of elevated UV radiation in an Antarctic lake Earth Planet. Sci. Lett. 2005 236 765–772.

    Article  CAS  Google Scholar 

  45. N. V. J. de Bakker, P. M. van Bodegom, W. H. van de Poll, P. Boelen, E. Nat, J. Rozema, R. Aerts, Is UV-B radiation affecting charophycean algae in shallow freshwater systems? New Phytol. 2005 166 957–966.

    Article  PubMed  Google Scholar 

  46. J. Rozema, B. van Geel, L. O. Bjorn, J. Lean, S. Madronich, PALEOCLIMATE: Toward Solving the UV Puzzle Science 2002 296 1621–1622.

    Article  CAS  PubMed  Google Scholar 

  47. C. T. Ruhland, T. A. Day, Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica Physiol. Plant. 2000 109 244–251.

    Article  CAS  Google Scholar 

  48. J. Rozema, P. Boelen, B. Solheim, M. Zielke, A. Buskens, M. Doorenbosch, R. Fijn, J. Herder, T. Callaghan, L. Björn, D. Jones, R. Broekman, P. Blokker, W. van de Poll, Stratospheric Ozone Depletion: High Arctic Tundra Plant Growth on Svalbard is not Affected by Enhanced UV-B after 7 years of UV-B Supplementation in the Field Plant Ecol. 2006 182 121–135.

    Article  Google Scholar 

  49. K. K. Newsham, D. A. Hodgson, A. Murray, A. W. Peat, H. J. Lewis, R. I. Smith, Response of two Antarctic bryophytes to stratospheric ozone depletion Global Change Biol. 2002 8 972–983.

    Article  Google Scholar 

  50. S. A. Robinson, J. Wasley, A. K. Tobin, Living on the edge-plants and global change in continental and maritime Antarctica Global Change Biol. 2003 9 1681–1717.

    Article  Google Scholar 

  51. S. Huttunen, N. M. Lappalainen, J. Turunen, UV-absorbing compounds in subarctic herbarium bryophytes Environ. Pollut. 2005 133 303–314.

    Article  CAS  PubMed  Google Scholar 

  52. S. Huttunen, T. Taipale, N. M. Lappalainen, E. Kubin, K. Lakkala, J. Kaurola, Environmental specimen bank samples of Pleurozium schreberi and Hylocomium splendens as indicators of the radiation environment at the surface Environ. Pollut. 2005 133 315–326.

    Article  CAS  PubMed  Google Scholar 

  53. L. O. Björn, T. Callaghan, C. Gehrke, T. Gunnarsson, B. Holmgren, U. Johanson, S. Snogerup and M. Sonesson, Effects on subarctic vegetation of enhanced UV-B radiation, in Plant and UV-B: Responses to Environmental Change, ed. P. Lumsden, Cambridge University Press, Cambridge, 1997, pp. 233–246.

    Chapter  Google Scholar 

  54. K. R. Markham, A. Franke, D. R. Given, P. Brownsey, Historical Antarctic ozone level trends from herbarium specimen flavonoids Bull. Liaison–Groupe Polyphenols 1990 13 230–235.

    Google Scholar 

  55. K. R. Markham, K. G. Ryan, S. J. Bloor, K. A. Mitchell, An increase in the luteolin: apigenin ratio in Marchantia polymorpha on UV-B enhancement Phytochemistry 1998 48 791–794.

    Article  CAS  Google Scholar 

  56. M. Arróniz-Crespo, E. Núñez-Olivera, J. Martínez-Abaigar, Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation Environ. Pollut. 2008 151 8–16.

    Article  PubMed  CAS  Google Scholar 

  57. R. B. Stothers, Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960 J. Geophys. Res. 1996 101 3901–3920.

    Article  Google Scholar 

  58. J. Rozema, P. Boelen, M. Doorenbosch, S. Bohncke, P. Blokker, C. Boekel, R. Broekman and M. Konert, A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard, in Plants and Climate Change, Springer, Dordrecht, The Netherlands, 2006, pp. 155–174.

    Chapter  Google Scholar 

  59. J. Rozema, S. Weijers, R. A. Broekman, P. Blokker, D. A. G. Buizer, C. Werleman, H. El Yaqine, H. H. Hoogedoorn, M. Mayoral Fuertes, E. Cooper, Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale Global Change Biol. 2009 15 1703–1715.

    Article  Google Scholar 

  60. D. Yeloff, P. Blokker, S. A. Bartlett, D. Mauquoy, J. Rozema, B. van Geel, Decomposition of Juncus seeds in a valley mire (Faroe Islands) over a 900 year period Org. Geochem. 2008 39 329–341.

    Article  CAS  Google Scholar 

  61. I. Poole, M. Dolezych, J. Kool, J. Van Der Burgh, P. F. van Bergen, Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006 236 345–354.

    Article  Google Scholar 

  62. V. V. Zuev, S. L. Bondarenko, Reconstruction of multicentennial behavior of the total ozone content based on dendrochronological data Dokl. Earth Sci. 2003 393 1120–1123.

    CAS  Google Scholar 

  63. V. V. Zuev, S. I. Dolgii, O. E. Bazhenov, Klimatologiya i trendy stratosfernogo ozona nad Tomskom za period 1996–2002 Opt. Atmos. Okeana 2004 17 312–317.

    Google Scholar 

  64. B. C. Thomas, A. L. Melott, Gamma-ray bursts and terrestrial planetary atmospheres New J. Phys. 2006 8 120-120.

    Article  CAS  Google Scholar 

  65. B. C. Thomas, C. H. Jackman, A. L. Melott, C. M. Laird, R. S. Stolarski, N. Gehrels, J. K. Cannizzo, D. P. Hogan, Terrestrial Ozone Depletion due to a Milky Way Gamma-Ray Burst Astrophys. J. 2005 622 L153–L156.

    Article  CAS  Google Scholar 

  66. A. L. Melott, B. C. Thomas, D. P. Hogan, L. M. Ejzak, C. H. Jackman, Climatic and biogeochemical effects of a galactic gamma ray burst Geophys. Res. Lett. 2005 32 L14808.

    Article  CAS  Google Scholar 

  67. R. A. Berner, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 Geochim. Cosmochim. Acta 2006 70 5653–5664.

    Article  CAS  Google Scholar 

  68. D. J. Beerling, C. Nicholas Hewitt, J. A. Pyle, J. A. Raven, Critical issues in trace gas biogeochemistry and global change Philos. Trans. R. Soc. London, Ser. A 2007 365 1843–1866.

    CAS  Google Scholar 

  69. H. Visscher, C. V. Looy, M. E. Collinson, H. Brinkhuis, J. Cittert, W. M. Kurschner, M. A. Sephton, Environmental mutagenesis during the end-Permian ecological crisis Proc. Natl. Acad. Sci. U. S. A. 2004 101 12952–12956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. R. A. Berner, D. J. Beerling, R. Dudley, J. M. Robinson, R. A. Wildman, Phanerozoic atmospheric oxygen Annu. Rev. Earth Planet. Sci. 2003 31 105–134.

    Article  CAS  Google Scholar 

  71. M. B. J. Harfoot, D. J. Beerling, B. H. Lomax, J. A. Pyle, A two-dimensional atmospheric chemistry modeling investigation of Earth’s Phanerozoic O3 and near-surface ultraviolet radiation history J. Geophys. Res. 2007 112 D07308.

    Google Scholar 

  72. C. B. Foster, S. A. Afonin, Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian - Triassic boundary J. Geol. Soc. 2005 162 653–659.

    Article  Google Scholar 

  73. H. Svensen, S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, B. Jamtveit, Siberian gas venting and the end-Permian environmental crisis Earth Planet. Sci. Lett. 2009 277 490–500.

    Article  CAS  Google Scholar 

  74. A. R. Hildebrand, G. T. Penfield, D. A. Kring, M. Pilkington, A. Camargo Z, S. B. Jacobsen, W. V. Boynton, Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico Geology 1991 19 867–871.

    Article  Google Scholar 

  75. C. M. Belcher, P. Finch, M. E. Collinson, A. C. Scott, N. V. Grassineau, Geochemical evidence for combustion of hydrocarbons during the K-T impact event Proc. Natl. Acad. Sci. U. S. A. 2009 106 4112–4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. C. M. Belcher, M. E. Collinson, A. R. Sweet, A. R. Hildebrand, A. C. Scott, Fireball passes and nothing burns–The role of thermal radiation in the Cretaceous-Tertiary event: Evidence from the charcoal record of North America Geology 2003 31 1061–1064.

    Article  Google Scholar 

  77. K. Kourtidis, Transfer of organic Br and Cl from the Biosphere to the Atmosphere during the Cretaceous/Tertiary Impact: Implications for the stratospheric Ozone Layer Atmos. Chem. Phys. 2005 5 207–214.

    Article  CAS  Google Scholar 

  78. G. R. J. Upchurch, B. H. Lomax, D. J. Beerling, Paleobotanical Evidence for Climatic Change across the Cretaceous-Tertiary Boundary, North America: Twenty Years after Wolfe and Upchurch Cour. Forschungsinst. Senckenberg 2007 258 57–74.

    Google Scholar 

  79. M. J. Sato, M. Hansen, M. McCormick, J. Pollack, Stratospheric aerosol optical depths, 1850–1990 J. Geophys. Res. 1993 98 22987–22994.

    Article  Google Scholar 

  80. K. R. S. Snell, P. Convey, K. K. Newsham, Metabolic recovery of the Antarctic liverwort Cephaloziella varians during spring snowmelt Polar Biol. 2007 30 1115–1122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This perspective was published as part of the themed issue on “Environmental effects of UV radiation”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozema, J., Blokker, P., Mayoral Fuertes, M.A. et al. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochem Photobiol Sci 8, 1233–1243 (2009). https://doi.org/10.1039/b904515e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b904515e

Navigation