Skip to main content
Log in

Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This Perspective summarizes the state of knowledge of the impact of ultraviolet radiation on the photoprotective xanthophyll cycle in marine phytoplankton. Excess photosynthetically active radiation (PAR; 400–700 nm) and ultraviolet radiation (UVR; 280–400 nm) affect various cellular processes and can potentially lead to reduced growth or viability loss in situ. Algae deploy photoprotective mechanisms that limit the hazardous effects of excess light exposure. Xanthophyll cycle pigments play a crucial role in photoprotection via the development of non-photochemical fluorescence quenching (NPQ) during excess radiation exposure. Research on the interacting effects of excess PAR and UVR exposure on xanthophyll cycle pigment synthesis and xanthophyll cycle activity has produced contrasting views. The current contribution summarizes research on photoprotection via photoregulation (xanthophyll cycle activity) and photoacclimation (adjustment of the xanthophyll cycle pigment pool) for marine phytoplankton. Subsequently, UVR effects on the xanthophyll cycle and on xanthophyll cycle pigment pools are discussed and results of supporting experiments with the common diatom Thalassiosira weissflogii are presented. We show that UVR exposure may enhance xanthophyll cycle pigment synthesis. This suggests that UVR-induced reduction in de-epoxidation state does not necessarily imply reduced energy dissipating potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stramski, L. Legendre, Laboratory simulation of light-focusing by water-surface waves Mar. Biol. 1992 114 341–348.

    Article  Google Scholar 

  2. J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, Cambridge University Press, Cambridge, UK, 2nd edn, 1994.

    Book  Google Scholar 

  3. K. L. Denman, A. E. Gargett, Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean Limnol. Oceanogr. 1983 28 801–815.

    Article  Google Scholar 

  4. P. J. Neale, R. F. Davis, J. J. Cullen, Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton Nature 1998 392 585–589.

    Article  CAS  Google Scholar 

  5. P. J. Neale, E. W. Helbling and H. E. Zagarese, Modulation of UVR exposure and effects by vertical mixing and advection, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, Royal Society of Chemistry, Cambridge, 2003, pp. 107–134.

    Google Scholar 

  6. P. J. Shaw, D. A. Purdie, Phytoplankton photosynthesis-irradiance parameters in the near-shore UK coastal waters of the North Sea: Temporal variation and environmental control Mar. Ecol. Prog. Ser. 2001 216 83–94.

    Article  CAS  Google Scholar 

  7. V. E. Villafañe, K. Sundbäck, F. L. Figueroa and E. W. Helbling, Photosynthesis in the aquatic environment as affected by UVR, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, The Royal Society of Chemistry, Cambridge, 2003, pp. 357–397.

    Google Scholar 

  8. C. B. Osmond, What is photoinhibition? Some insights from comparisons of shade and sun plants, in Photoinhibition of Photosynthesis from molecular mechanisms to the field, ed. N. R. Baker and J. R. Bowyer, Garland Science, Oxford, UK, 1994, pp. 1–24.

    Google Scholar 

  9. W. H. Van de Poll, M. A. Van Leeuwe, J. Roggeveld, A. G. J. Buma, Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae) J. Phycol. 2005 41 840–850.

    Article  Google Scholar 

  10. S. Takahashi, N. Murata, How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008 13 178–182.

    Article  CAS  PubMed  Google Scholar 

  11. S. Sanatbarbara, G. Agostini, A. P. Casazza, C. D. Syme, P. Heathcote, F. Böhles, M. C. W. Evans, R. C. Jennings, D. Carbonera, Chlorophyll triplet states associated with photosystem I and photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii Biochim. Biophys. Acta, Bioenerg. 2007 1767 88–105.

    Article  CAS  Google Scholar 

  12. A. Melis, Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci. 1999 4 130–135.

    Article  CAS  PubMed  Google Scholar 

  13. P. J. Neale, J. J. Cullen, R. F. Davis, Inhibition of marine photosynthesis by ultraviolet radiation: Variable sensitivity in the Weddell-Scotia confluence during the austral spring Limnol. Oceanogr. 1998 43 433–448.

    Article  CAS  Google Scholar 

  14. K. Bischof, G. Kräbs, C. Wiencke, D. Hanelt, Solar ultraviolet radiation affects the activity of ribulose- 1, 5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactula L Planta 2002 215 502–509.

    Article  CAS  PubMed  Google Scholar 

  15. J. Beardall, P. Heraud, S. Roberts, K. Shelly, S. Stojkovic, Effects of UV-B radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae) Phycologia 2002 41 268–272.

    Article  Google Scholar 

  16. A. G. J. Buma, P. Boelen and W. A. Jeffrey, UVR-induced DNA damage in aquatic organisms, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, Royal Society of Chemistry, Cambridge, 2003, pp. 291–327.

    Google Scholar 

  17. E. W. Helbling, A. G. J. Buma, W. H. van de Poll, V. F. Zenoff, V. E. Villafañe, UVR-induced photosynthetic inhibition dominates over DNA damage in marine dinoflagellates exposed to fluctuating solar radiation regimes J. Exp. Mar. Biol. Ecol. 2008 365 96–102.

    Article  CAS  Google Scholar 

  18. E. M. Aro, S. McCaffy, J. M. Anderson, Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances: Role of D1 protein turnover Plant Physiol. 1994 104 1033–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Heraud, J. Beardall, Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes Photosynth. Res. 2000 63 123–134.

    Article  CAS  PubMed  Google Scholar 

  20. N. Murata, S. Takahashi, Y. Nishiyama, S. I. Allakhverdiev, Photoinhibition of photosystem II under environmental stress Biochim. Biophys. Acta, Bioenerg. 2007 1767 414–421.

    Article  CAS  Google Scholar 

  21. J. N. Bouchard, D. A. Campbell, S. Roy, Effect of UV-B radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina) J. Phycol. 2005 41 273–286.

    Article  CAS  Google Scholar 

  22. J. N. Bouchard, M. L. Longhi, S. Roy, D. A. Campbell, G. Ferreyra, Interaction of nitrogen status and UVB sensitivity in a temperate phytoplankton assemblage J. Exp. Mar. Biol. Ecol. 2008 359 67–76.

    Article  CAS  Google Scholar 

  23. F. Xiong, Evidence that UV-B tolerance of the photosynthetic apparatus in microalgae is related to D1 turnover mediated repair cycle in vivo J. Plant Physiol. 2001 158 285–294.

    Article  CAS  Google Scholar 

  24. D. Campbell, M. J. Eriksson, O. Öuist, P. Gustafsson, A. K. Clarke, The cyanobacterium Synechococcus resists UV-B by exchanging PSII reaction center D1 proteins Proc. Natl. Acad. Sci. U. S. A. 1998 95 364–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Hazzard, M. P. Lesser, R. A. Kinzie III, Effects of ultraviolet radiation on photosynthesis in the subtropical marine diatom, Chaetoceros gracilis (Bacillariophyceae) J. Phycol. 1997 33 960–968.

    Article  Google Scholar 

  26. B. Demming-Adams, Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin Biochim. Biophys. Acta, Bioenerg. 1990 1020 1–24.

    Article  Google Scholar 

  27. M. Olaizola, J. LaRoche, Z. Kolber, P. G. Falkowski, Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom Photosynth. Res. 1994 41 357–370.

    Article  CAS  PubMed  Google Scholar 

  28. P. Horton, A. Ruban, Molecular design of the photosystem II light–harvesting antenna: photosynthesis and photoprotection J. Exp. Bot. 2004 56 365–373.

    Article  PubMed  CAS  Google Scholar 

  29. R. Delsome, J. Olive, F. A. Wollman, Changes in light energy distribution upon state transitions: an in vivo photoaucoustic study of wild type and photosynthesis mutants from Chlamydomonas reinhardtii Biochim. Biophys. Acta, Bioenerg. 1996 1273 150–158.

    Article  Google Scholar 

  30. S. Bailey, N. H. Mann, C. Robinson, D. J. Scanlan, The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria FEBS Lett. 2005 579 275–280.

    Article  CAS  PubMed  Google Scholar 

  31. C. Wilhelm, C. Büchel, J. Fisahn, R. Goss, T. Jakob, J. LaRoche, J. Lavaud, M. Lohr, U. Riebesell, K. Stehfest, K. Valentin, P. Kroth, The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae Protist 2006 157 91–124.

    Article  CAS  PubMed  Google Scholar 

  32. J. Lavaud, R. F. Strzepek, P. G. Kroth, Photoprotection capacity differs among diatoms: possible consequences on spatial distribution of diatoms related to fluctuations in the underwater light climate Limnol. Oceanogr. 2007 52 1188-1041.

    Article  CAS  Google Scholar 

  33. Y. Munekage, M. Hashimoto, C. Miyake, K. Tomizawa, T. Endo, M. Tasaka, T. Shikanai, Cyclic electron flow around photosystem I is essential for photosynthesis Nature 2004 429 579–582.

    Article  CAS  PubMed  Google Scholar 

  34. R. G. Walters, P. Horton, Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves Photosynth. Res. 1991 27 121–133.

    Article  CAS  PubMed  Google Scholar 

  35. K. Maxwell, G. N. Johnson, Chlorophyll fluorescence,-a practical guide J. Exp. Bot. 2000 51 659–668.

    Article  CAS  PubMed  Google Scholar 

  36. I. Baroli, A. Melis, Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size Planta 1998 205 288–296.

    Article  CAS  PubMed  Google Scholar 

  37. M. Willemöes, E. Monas, Relationship between growth irradiance and the xanthophyll cycle pool in the diatom Nitzschia palea Physiol. Plant. 1991 83 449–456.

    Article  Google Scholar 

  38. T. A. Moisan, M. Olaizola, B. G. Mitchell, Xanthophyll cycling in Phaeocystis antarctica Karsten: Changes in cellular fluorescence Mar. Ecol. Prog. Ser. 1998 169 113–121.

    Article  Google Scholar 

  39. A. G. J. Buma, S. W. Wright, R. van den Enden, W. H. van de Poll, A. T. Davison, PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalgae Mar. Ecol. Prog. Ser. 2006 315 33–42.

    Article  CAS  Google Scholar 

  40. J. Lavaud, B. Rousseau, H. J. van Gorkom, A. L. Etienne, Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum Plant Physiol. 2002 129 1398–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. A. Moline, Photoadaptive response during the development of a coastal Antarctic diatom bloom and relationship to water column stability Limnol. Oceanogr. 1998 43 146–153.

    Article  CAS  Google Scholar 

  42. H. Claustre, P. Kerhervé, J. C. Marty, L. Prieur, Phytoplankton photoadaptation related to some frontal physical processes J. Mar. Sci. 1994 5 251–265.

    Google Scholar 

  43. J. Lavaud, B. Rousseau, A. L. Etienne, General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae) J. Phycol. 2004 40 130–137.

    Article  Google Scholar 

  44. R. J. Geider, J. LaRoche, R. M. Greene, M. Olaizola, Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation J. Phycol. 1993 29 755–766.

    Article  CAS  Google Scholar 

  45. W. H. Van de Poll, P. J. Janknegt, M. A. van Leeuwe, R. J. W. Visser, A. G. J. Buma, Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance J. Photochem. Photobiol., B 2009 94 32–37.

    Article  CAS  Google Scholar 

  46. W. H. Van de Poll, R. J. W. Visser, A. G. J. Buma, Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii Limnol. Oceanogr. 2007 52 1430–1438.

    Article  Google Scholar 

  47. W. H. Van de Poll, A. C. Alderkamp, P. J. Janknegt, J. Roggeveld, A. G. J. Buma, Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and Antarctic marine diatom Limnol. Oceanogr. 2006 51 1239–1248.

    Article  Google Scholar 

  48. E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Greem, D. Martinez et al., The genome of the diatom Thalassiosira pseudonana: ecology, evolution and metabolism Science 2004 306 79–86.

    Article  CAS  PubMed  Google Scholar 

  49. T. Jakob, R. Goss, C. Wilhelm, Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum Plant Biol. 1999 1 76–83.

    Article  CAS  Google Scholar 

  50. T. Jakob, R. Goss, C. Wilhelm, Unusual pH-dependence of diatoxanthin de-epoxidase activation causes chlororespiratoty induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum J. Plant Physiol. 2001 158 383–390.

    Article  CAS  Google Scholar 

  51. I. Grouneva, T. Jakob, C. Wilhelm, R. Goss, The regulation of xanthophyll cycle activity and non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana Biochim. Biophys. Acta, in press.

  52. R. Goericke, A. Welschmeyer, The carotenoid-labeling method: measuring specific rates of carotenoid synthesis in natural phytoplankton communities Mar. Ecol. Prog. Ser. 1993 98 157–171.

    Article  CAS  Google Scholar 

  53. I. Grouneva, T. Jakob, C. Wilhelm, R. Goss, A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana Plant Cell Physiol. 2008 49 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  54. N. Schubert, E. García-Mendoza, Photoinhibition in red algal species with different carotenoid profiles J. Phycol. 2008 44 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  55. M. A. Van Leeuwe, B. van Sikkelerus, W. W. C. Gieskes, J. Stefels, Taxon-specific differences in photoacclimation to fluctuating irradiance in an Antarctic diatom and a green flagellate Mar. Ecol. Prog. Ser. 2005 288 9–19.

    Article  Google Scholar 

  56. C. Dimier, F. Corato, T. Tramontano, C. Brunet, Photoprotection and xanthophyll-cycle activity in three marine diatoms J. Phycol. 2007 43 1–11.

    Google Scholar 

  57. K. R. Arrigo, D. H. Robinson, D. L. Worthen, R. D. Dunbar, G. R. DiTullio, M. VanWoert, M. P. Lizotte, Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean Science 1999 283 365–367.

    Article  CAS  PubMed  Google Scholar 

  58. L. R. Kropuenske, M. A. Mills, G. L. van Dijken, S. Bailey, D. H. Robinson, N. A. Welschmeyer, K. R. Arrigo, Photophysiology in two major Southern Ocean phytoplankton taxa: Photoprotection in Phaeocystis antartctica and Flagilariopsis cylindrus Limnol. Oceanogr. 2009 54 1176–1196.

    Article  CAS  Google Scholar 

  59. R. Goss, H. Mewes, C. Wilhelm, Stimulation of diadinoxanthin cycle by UV-B radiation in the diatom Phaeodactylum tricornutum Photosynth. Res. 1999 59 73–80.

    Article  CAS  Google Scholar 

  60. C. Sobrino, P. J. Neale, O. Montero, L. M. Lubián, Biological weighting function for xanthophyll de-epoxidation induced by ultraviolet radiation Physiol. Plant. 2005 125 41–51.

    Article  CAS  Google Scholar 

  61. A. G. J. Buma, R. J. W. Visser, W. H. van de Poll, V. Villafane, P. J. Janknegt, E. W. Helbling, Wavelength-dependent xanthophyll cycle activity in marine microalgae exposed to natural ultraviolet radiation Eur. J. Phycol.

  62. H. Mewes, M. Richter, Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum Plant Physiol. 2002 130 1527–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. J. W. Rijstenbil, UV- and salinity–induced oxidative effects in the marine diatom Cylindrotheca closterium during simulated emersion Mar. Biol. 2005 147 1063–1073.

    Article  CAS  Google Scholar 

  64. K. Bischof, G. Peralta, G. Kräbs, W. H. van de Poll, J. L. Pérez-Loréns, A. M. Breeman, Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain J. Exp. Mar. Biol. 2002 379 2411–2421.

    Google Scholar 

  65. T. J. Evens, G. J. Kirkpatrick, D. F. Millie, D. J. Chapman, O. M. E. Schofield, Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight J. Plankton Res. 2001 23 1177–1193.

    Article  CAS  Google Scholar 

  66. L. Zudaire, S. Roy, Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii J. Photochem. Photobiol., B 2001 62 26–34.

    Article  CAS  Google Scholar 

  67. P. J. Neale, A. T. Banaszak, C. R. Jarriel, Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): Mycosporine-like amino acids protect against inhibition of photosynthesis J. Phycol. 1998 34 928–938.

    Article  CAS  Google Scholar 

  68. E. Litchman, P. J. Neale, UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad Mar. Ecol. Prog. Ser. 2005 300 53–69.

    Article  CAS  Google Scholar 

  69. P. J. Janknegt, J. W. Rijstenbil, W. H. van de Poll, T. S. Gechev, A. G. J. Buma, Oxidative stress responses in the marine Antarctic diatom Chaetoceros brevis (Bacillariophyceae) J. Phycol. 2008 44 957–966.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This perspective was published as part of the themed issue on “Environmental effects of UV radiation”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Poll, W.H., Buma, A.G.J. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?. Photochem Photobiol Sci 8, 1295–1301 (2009). https://doi.org/10.1039/b904501e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b904501e

Navigation