Skip to main content
Log in

Chlorochromate ion as a catalyst for the photodegradation of chloroform by visible light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Exposure of solutions of tetrabutylammonium chlorochromate in chloroform to UV or blue light causes decomposition of the chloroform and the buildup of HCl and peroxides in solution. The CrO3Cl is converted during irradiation to CrO2Cl2, which forms a suspension in the chloroform, and then to CrOCl4. CrO2Cl2 does not by itself catalyze photodecomposition. The initial rate of HCl formation shows an apparently linear dependence on the incident light intensity and on the fraction of light absorbed by chlorochromate, but different values for the apparent quantum yield at 435 nm with high and low concentrations imply a nonlinear contribution to the rate. It is proposed that, at least initially, a cycle involving photoreduction of a Cr(vi) species and thermal reoxidation of Cr(v) by CCl3OOH produces radicals that initiate further decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. U.S. Environmental, Protection Agency, Preliminary assessment of suspected carcinogens in drinkingwater [Report to Congress], 1975, 120 pp.

  2. P. Pavelic, P. J. Dillon and B. C. Nicholson, Comparative evaluation of the fate of disinfection byproducts at eight aquifer storage and recovery sites, Environ. Sci. Technol., 2006, 40, 501–508.

    Article  CAS  Google Scholar 

  3. U.S. Environmental, Protection Agency, Ambient water quality criteria for halomethanes, 1980.

  4. U.S. Environmental, Protection Agency, Ambient water quality criteria for chloroform, 1999.

  5. K. J. Doyle, H. Tran, M. Baldoni-Olivencia, M. Karabulut and P. E. Hoggard, The photocatalytic degradation of dichloromethane by chlorocuprate(ii) ions, Inorg. Chem., 2008, 47, 7029–7034.

    Article  CAS  Google Scholar 

  6. P. E. Hoggard, M. Gruber and A. Vogler, The photolysis of iron(iii) chloride in chloroform, Inorg. Chim. Acta, 2003, 346, 137–142.

    Article  CAS  Google Scholar 

  7. Z. Muñoz, A. S. Cohen, L. M. Nguyen, T. A. McIntosh and P. E. Hoggard, Photocatalysis by tetraphenylporphyrin of the decomposition of chloroform, Photochem. Photobiol. Sci., 2008, 7, 337–343.

    Article  Google Scholar 

  8. A. Molinari, G. Varani, E. Polo, S. Vaccari and A. Maldotti, Photocatalytic and catalytic activity of heterogenized W10O324− in the bromide-assisted bromination of arenes and alkenes in the presence of oxygen, J. Mol. Catal. A: Chem., 2007, 262, 156–163.

    Article  CAS  Google Scholar 

  9. A. Maldotti, G. Varani and A. Molinari, Photo-assisted chlorination of cycloalkanes with iron chloride heterogenized with Amberlite, Photochem. Photobiol. Sci., 2006, 5, 993–995.

    Article  CAS  Google Scholar 

  10. R. Cooper, J. B. Cumming, S. Gordon and W. A. Mulac, The reactions of the halomethyl radicals CCl3 and CF3 with oxygen, Radiat. Phys. Chem., 1980, 16, 169–174.

    CAS  Google Scholar 

  11. S. Hautecloque, On the photooxidation of gaseous trichloromethane and chlorosyl radical formation, J. Photochem., 1980, 14, 157–165.

    Article  CAS  Google Scholar 

  12. S. Mosseri, Z. B. Alfassi and P. Neta, Absolute rate constants for hydrogen abstraction from hydrocarbons by the trichloromethylperoxy radical, Int. J. Chem. Kinet., 1987, 19, 309–317.

    Article  CAS  Google Scholar 

  13. Z. B. Alfassi, A. Harriman, S. Mosseri and P. Neta, Rates and mechanisms of oxidation of ZnTPP by CCl3O2 radicals in various solvents, Int. J. Chem. Kinet., 1986, 18, 1315–1321.

    Article  CAS  Google Scholar 

  14. D. Brault and P. Neta, Reactions of iron(iii) porphyrins with peroxyl radicals derived from halothane and halomethanes, J. Phys. Chem., 1984, 88, 2857–2862.

    Article  CAS  Google Scholar 

  15. J. Grodkowski and P. Neta, One-electron oxidation in irradiated carbon tetrachloride solutions of ZnTPP, TMPD, and phenols, J. Phys. Chem., 1984, 88, 1205–1209.

    Article  CAS  Google Scholar 

  16. R. E. Huie, D. Brault and P. Neta, Rate constants for one-electron oxidation by the trifluoromethylperoxy, trichloromethylperoxy, tribromomethylperoxy radicals in aqueous solutions, Chem. Biol. Interact., 1987, 62, 227–235.

    Article  CAS  Google Scholar 

  17. G. Merenyi, J. Lind and L. Engman, One- and two-electron reduction potentials of peroxyl radicals and related species, J. Chem. Soc. Perkin Trans. 2, 1994, 2551–2553.

    Google Scholar 

  18. J. Moenig, D. Bahnemann and K. D. Asmus, One electron reduction of carbon tetrachloride in oxygenated aqueous solutions: a trichloromethyldioxy-free radical mediated formation of chloride and carbon dioxide, Chem. Biol. Interact., 1983, 47, 15–27.

    Article  CAS  Google Scholar 

  19. J. E. Packer, R. L. Wilson, D. Bahnemann and K. D. Asmus, Electron transfer reactions of halogenated aliphatic peroxyl radicals: measurement of absolute rate constants by pulse radiolysis, J. Chem. Soc., Perkin Trans. 2, 1980, 296–299.

    Google Scholar 

  20. X. Shen, J. Lind, T. E. Eriksen and G. Merenyi, Reactivity of the trichloromethylperoxo radical: evidence for a first-order transformation, J. Phys. Chem., 1989, 93, 553–557.

    Article  CAS  Google Scholar 

  21. S. Gäb and W. V. Turner, Photooxidation of chloroform: isolation and characterization of trichloromethyl hydroperoxide, Angew. Chem., 1985, 97, 48.

    Article  Google Scholar 

  22. J. K. Kochi, Oxidation-reduction reactions of free radicals and metal complexes, Free Radicals, 1973, 1, 591–683.

    CAS  Google Scholar 

  23. T. J. Wallington, W. F. Schneider, I. Barnes, K. H. Becker, J. Sehested and O. J. Nielson, Stability and infrared spectra of mono-, di-, and trichloromethanol, Chem. Phys. Lett., 2000, 322, 97–102.

    Article  CAS  Google Scholar 

  24. R. Mertens, C. von Sonntag, J. Lind and G. Merenyi, Pulse-radiolysis study of the kinetics of phosgene hydrolysis in aqueous solution, Angew. Chem., 1994, 106, 1320–1322.

    Article  CAS  Google Scholar 

  25. D. G. Tuck and B. D. Faithful, An anionic chloroperoxy-complex of chromium(vi), J. Chem. Soc., 1965, 5753–5754.

    Google Scholar 

  26. A. Stone and E. B. Fleischer, The molecular and crystal structure of porphyrin diacids, J. Am. Chem. Soc., 1968, 90, 2735–2748.

    Article  CAS  Google Scholar 

  27. H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey, Photochem CAD: a computer-aided design and research tool in photochemistry, Photochem. Photobiol., 1998, 68, 141–142.

    CAS  Google Scholar 

  28. J. S. Lindsey, PhotochemCAD, spectra recorded by J. Li and R. W. Wagner.

  29. E. Solis Montiel and J. A. H. Solano, Spectrophotometric analysis for chlorine by the extraction of triiodide formed in chloroform solution of tetrabutylammonium perchlorate, Ingenieria y Ciencia Quimica, 1986, 10, 45–48.

    CAS  Google Scholar 

  30. M. Hicks and J. M. Gebicki, A spectrophotometric method for the determination of lipid hydroperoxides, Anal. Biochem., 1979, 99, 249–253.

    Article  CAS  Google Scholar 

  31. O. V. Ziebarth and J. Selbin, Spectral studies of oxochromium(v) complexes, J. Inorg. Nucl. Chem., 1970, 32, 849–865.

    Article  CAS  Google Scholar 

  32. P. E. Hoggard, Solvent-initiated photochemistry of transition metal complexes, Coord. Chem. Rev., 1997, 159, 235–243.

    Article  CAS  Google Scholar 

  33. O. Horvath and K. L. Stevenson, Charge Transfer Photochemistry of Coordination Compounds, VCH, Weinham, Germany, 1993.

    Google Scholar 

  34. D. C. McCain, Inductive effects and Franck-Condon shifts in the visible spectra of substituted chromate ions, J. Phys. Chem., 1975, 79, 1102–1105.

    Article  CAS  Google Scholar 

  35. G. P. Semeluk and I. Unger, Benzene Photosensitized Decomposition of Chloroform, Nature, 1963, 198, 853–855.

    Article  CAS  Google Scholar 

  36. E. S. Apostolova and A. V. Tulub, Determination of CD- and CH-bond energies in chloroform-d and fluoroform from vibrational spectra using the Morse potential, Opt Spektrosk., 1995, 78, 622–627.

    CAS  Google Scholar 

  37. T. W. Newton and G. K. Rollefson, The relative rates of photochlorination of chloroform and chloroform-d, J. Chem. Phys., 1949, 17, 718–725.

    Article  CAS  Google Scholar 

  38. L. A. Peña, A. J. Seidl, K. N. Chau, B. C. Keck, P. L. Feng and P. E. Hoggard, Photocatalytic degradation of chloroform by bis(bipyridine)dichlororuthenium(iii/ii), submitted for publication.

  39. R. Armstrong and N. A. Gibson, Peroxychromium compounds, Aust. J. Chem., 1968, 21, 897–905.

    Article  CAS  Google Scholar 

  40. H. Kon, Quinquevalent chromium compounds examined by ESR and optical spectra, J. Inorg. Nucl. Chem., 1963, 25, 933–944.

    Article  CAS  Google Scholar 

  41. H.-L. Krauss, M. Leder and G. Muenster, The reduction of Cr(VI) by chloride ions. The chemistry of chromium(v) compounds, Chem. Ber., 1963, 96, 3008–3016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. Hoggard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidl, A.J., Cohen, L.R., Peña, L.A. et al. Chlorochromate ion as a catalyst for the photodegradation of chloroform by visible light. Photochem Photobiol Sci 7, 1373–1377 (2008). https://doi.org/10.1039/b814585g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b814585g

Navigation