Skip to main content

Advertisement

Log in

Challenges and opportunities for photochemists on the verge of solar energy conversion

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Has photochemistry missed the boat on solar energy conversion? Certainly not, but it is time to reach out and make a difference if we do not want to have to choose between feeding our families or our thirst for fuel. Compared to other initiatives, such as biofuels or nuclear fusion, direct conversion of solar energy into electricity or fuels is lagging behind in terms of funding, and this is slowing progress on overcoming critical bottlenecks. This perspective outlines some of the key fundamental issues in solar energy conversion based on organic photovoltaic devices or artificial photosynthesis where being a photochemist can make a difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. S. Lewis and D. G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 15729–15735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. L. Dempsey, A. J. Esswein, D. R. Manke, J. Rosenthal, J. D. Soper and D. G. Nocera, Molecular Chemistry of Consequence to Renewable Energy, Inorg. Chem., 2005, 44, 6879–6892.

    Article  CAS  PubMed  Google Scholar 

  3. P. V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion, J. Phys. Chem. C, 2007, 111, 2834–2860.

    CAS  Google Scholar 

  4. N. Armaroli and V. Balzani, The future of energy supply: Challenges and opportunities, Angew. Chem., Int. Ed., 2007, 46, 52–66.

    Article  CAS  Google Scholar 

  5. http://www.iter.org.

  6. International Fusion Materials Irradiation Facility.

  7. http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf.

  8. S. Gunes, H. Neugebauer and N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chem. Rev., 2007, 107, 1324–1338.

    Article  PubMed  CAS  Google Scholar 

  9. H. Hoppe and N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res., 2004, 19, 1924–1945.

    Article  CAS  Google Scholar 

  10. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells, Adv. Mater., 2007, 19, 1551–1566.

    Article  CAS  Google Scholar 

  11. Management Report “National Solar Technology Roadmap: Wafer-Silicon PV” NREL/MP-520-41733, June 2007.

  12. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  13. J. Roncali, P. Leriche and A. Cravino, From one-to three-dimensional organic semiconductors: In search of the organic silicon?, Adv. Mater., 2007, 19, 2045–2060.

    Article  CAS  Google Scholar 

  14. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A. J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater., 2006, 18, 572–576.

    Article  CAS  Google Scholar 

  15. G. Dennler, S. Bereznev, D. Fichou, K. Holl, D. Ilic, R. Koeppe, M. Krebs, A. Labouret, C. Lungenschmied, A. Marchenko, D. Meissner, E. Mellikov, J. Meot, A. Meyer, T. Meyer, H. Neugebauer, A. Opik, N. S. Sariciftci, S. Taillemite and T. Wohrle, A self-rechargeable and flexible polymer solar battery, Sol. Energy, 2007, 81, 947–957.

    Article  CAS  Google Scholar 

  16. A. Pivrikas, N. S. Sariciftci, G. Juska and R. Osterbacka, A review of charge transport and recombination in polymer/fullerene organic solar cells, Prog. Photovolt: Res. Appl., 2007, 15, 677–696.

    Article  CAS  Google Scholar 

  17. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer, Adv. Mater., 2004, 16, 1009–1013.

    Article  CAS  Google Scholar 

  18. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles, Adv. Funct. Mater., 2006, 16, 1112–1116.

    Article  CAS  Google Scholar 

  19. J. Gilot, M. M. Wienk and R. A. J. Janssen, Double and triple junction polymer solar cells processed from solution, Appl. Phys. Lett., 2007, 90, 143511–143513.

    Article  CAS  Google Scholar 

  20. C. J. Brabec, C. Winder, N. S. Sariciftci, J. C. Hummelen, A. Dhanabalan, P. A. Van Hal and R. A. J. Janssen, A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes, Adv. Funct. Mater., 2002, 12, 709–712.

    Article  CAS  Google Scholar 

  21. M. M. Wienk, M. P. Struijk and R. A. J. Janssen, Low band gap polymer bulk heterojunction solar cells, Chem. Phys. Lett., 2006, 422, 488–491.

    Article  CAS  Google Scholar 

  22. A. Luque and A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett., 1997, 78, 5014–5017.

    Article  CAS  Google Scholar 

  23. R. Koeppe, O. Bossart, G. Calzaferri and N. S. Sariciftci, Advanced photon-harvesting concepts for low-energy gap organic solar cells, Sol. Energy Mater. Sol. Cells, 2007, 91, 986–995.

    Article  CAS  Google Scholar 

  24. R. Koeppe, N. S. Sariciftci and A. Buchtemann, Enhancing photon harvesting in organic solar cells with luminescent concentrators, Appl. Phys. Lett., 2007, 90, 181126.

    Article  CAS  Google Scholar 

  25. P. Würfel, Physics of Solar Cells, Wiley-VCH, Weinheim, 2005.

  26. M. S. Rodriguez-Morgade, T. Torres, C. Atienza-Castellanos and D. M. Guldi, Supramolecular bis(rutheniumphthalocyanine)-perylenediimide ensembles: Simple complexation as a powerful tool toward long-lived radical ion pair states, J. Am. Chem. Soc., 2006, 128, 15145–15154.

    Article  CAS  PubMed  Google Scholar 

  27. T. M. Figueira-Duarte, A. Gegout and J. F. Nierengarten, Molecular and supramolecular C-60-oligophenylenevinylene conjugates, Chem. Commun., 2007, 109–119.

    Google Scholar 

  28. A. M. Ramos, S. C. J. Meskers, E. H. A. Beckers, R. B. Prince, L. Brunsveld and R. A. J. Janssen, Supramolecular Control over Donor-Acceptor Photoinduced Charge Separation, J. Am. Chem. Soc., 2004, 126, 9630–9644.

    Article  CAS  Google Scholar 

  29. L. Sanchez, M. Sierra, N. Martin, D. M. Guldi, M. W. Wienk and R. A. J. Janssen, C60 -exTTF-C60 Dumbbells: Cooperative Effects Stemming from Two C60s on the Radical Ion Pair Stabilization, Org. Lett., 2005, 7, 1691–1694.

    Article  CAS  PubMed  Google Scholar 

  30. L. Sanchez, N. Martin and D. M. Guldi, Hydrogen-bonding motifs in fullerene chemistry, Angew. Chem., Int. Ed., 2005, 44, 5374–5382.

    Article  CAS  Google Scholar 

  31. C. M. Atienza, G. Fernandez, L. Sanchez, N. Martin, I. S. Dantas, M. M. Wienk, R. A. J. Janssen, G. M. A. Rahman and D. M. Guldi, Light harvesting tetrafullerene nanoarray for organic solar cells, Chem. Commun., 2006, 514–516.

    Google Scholar 

  32. H. Imahori, Creation of fullerene-based artificial photosynthetic systems, Bull. Chem. Soc. Jpn., 2007, 80, 621–636.

    Article  CAS  Google Scholar 

  33. E. Bundgaard, S. E. Shaheen, F. C. Krebs and D. S. Ginley, Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole, Sol. Energy Mater. Sol. Cells, 2007, 91, 1631–1637.

    Article  CAS  Google Scholar 

  34. F. C. Krebs and M. Jorgensen, Conducting block copolymers. Towards a polymer pn-junction, Polym. Bull., 2003, 50, 359–366.

    Article  CAS  Google Scholar 

  35. S. S. Sun, C. Zhang, A. Ledbetter, S. Choi, K. Seo, C. E. Bonner, M. Drees and N. S. Sariciftci, Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach, Appl. Phys. Lett., 2007, 90, 043117.

    Article  CAS  Google Scholar 

  36. H. Hoppe and N. S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem., 2006, 16, 45–61.

    Article  CAS  Google Scholar 

  37. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nanoscale Morphology of High-Performance Polymer Solar Cells, Nano Lett., 2005, 5, 579–583.

    Article  CAS  PubMed  Google Scholar 

  38. T. E. Kaiser, H. Wang, V. Stepanenko and F. Würthner, Supramolec-ular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes, Angew. Chem., Int. Ed., 2007, 46, 5541–5544.

    Article  CAS  Google Scholar 

  39. P. Jonkheijm, J. K. J. van Duren, M. Kemerink, R. A. J. Janssen, A. Schenning and E. W. Meijer, Control of film morphology by folding hydrogen-bonded oligo(p-phenylenevinylene) polymers in solution, Macromolecules, 2006, 39, 784–788.

    Article  CAS  Google Scholar 

  40. A. El-Ghayoury, A. Schenning, P. A. van Hal, J. K. J. van Duren, R. A. J. Janssen and E. W. Meijer, Supramolecular hydrogen-bonded oligo(p-phenylene vinylene) polymers, Angew. Chem., Int. Ed., 2001, 40, 3660–3663.

    Article  CAS  Google Scholar 

  41. A. Schenning, P. Jonkheijm, E. Peeters and E. W. Meijer, Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s, J. Am. Chem. Soc., 2001, 123, 409–416.

    Article  CAS  Google Scholar 

  42. E. H. A. Beckers, P. A. van Hal, A. Schenning, A. El-ghayoury, E. Peeters, M. T. Rispens, J. C. Hummelen, E. W. Meijer and R. A. J. Janssen, Singlet-energy transfer in quadruple hydrogen-bonded oligo(p-phenylenevinylene)-fullerene dyads, J. Mater. Chem., 2002, 12, 2054–2060.

    Article  CAS  Google Scholar 

  43. A. El-ghayoury, A. Schenning, P. A. van Hal, C. H. Weidl, J. L. J. van Dongen, R. A. J. Janssen, U. S. Schubert and E. W. Meijer, Metallo-supramolecular oligo(p-phenylene vinylene)/[60] fullerene architectures: towards functional materials, Thin Solid Films, 2002, 403, 97–101.

    Article  Google Scholar 

  44. F. C. Grozema and L. D. A. Siebbeles, Mechanism of charge transport in self-organizing organic materials, Int. Rev. Phys. Chem., 2008, 27, 87–138.

    Article  CAS  Google Scholar 

  45. F. Würthner, Z. Chen, F. J. M. Hoeben, P. Osswald, C.-C. You, P. Jonkheijm, J. von Herrikhuyzen, A. P. H. J. Schenning, P. P. A. M. van der Schoot, E. W. Meijer, E. H. A. Beckers, S. C. J. Meskers and R. A. J. Janssen, Supramolecular p-n-Heterojunctions by Co-Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes, J. Am. Chem. Soc., 2004, 126, 10611–10618.

    Article  PubMed  CAS  Google Scholar 

  46. E. H. A. Beckers, Z. J. Chen, S. C. J. Meskers, P. Jonkheijm, A. Schenning, X. Q. Li, P. Osswald, F. Wurthner and R. A. J. Janssen, The importance of nanoscopic ordering on the kinetics of photoinduced charge transfer in aggregated pi-conjugated hydrogen-bonded donor-acceptor systems, J. Phys. Chem. B, 2006, 110, 16967–16978.

    Article  CAS  PubMed  Google Scholar 

  47. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. Schenning, About Supramolecular Assemblies of p-Conjugated Systems, Chem. Rev., 2005, 105, 1491–1546.

    Article  CAS  PubMed  Google Scholar 

  48. T. Hasobe, P. V. Kamat, M. A. Absalom, Y. Kashiwagi, J. Sly, M. J. Crossley, K. Hosomizu, H. Imahori and S. Fukuzumi, Supramolecular photovoltaic cells based on composite molecular nanoclusters: Dendritic porphyrin and C60, Porphyrin dimer and C-60, and Porphyrin-C60 dyad, J. Phys. Chem. B, 2004, 108, 12865–12872.

    Article  CAS  Google Scholar 

  49. C. H. Huang, N. D. McClenaghan, A. Kuhn, G. Bravic and D. M. Bassani, Hierarchical self-assembly of all-organic photovoltaic devices, Tetrahedron, 2006, 62, 2050–2059.

    Article  CAS  Google Scholar 

  50. N. D. McClenaghan, Z. Grote, K. Darriet, M. Zimine, R. M. Williams, L. De Cola and D. M. Bassani, Supramolecular control of oligothienylenevinylene-fullerene interactions: evidence for a ground-state EDA complex, Org. Lett., 2005, 7, 807–810.

    Article  CAS  PubMed  Google Scholar 

  51. C. H. Huang, N. D. McClenaghan, A. Kuhn, J. W. Hofstraat and D. M. Bassani, Enhanced photovoltaic response in hydrogen-bonded all-organic devices, Org. Lett., 2005, 7, 3409–3412.

    Article  CAS  PubMed  Google Scholar 

  52. A. Cravino, G. Zerza, M. Maggini, S. Bucella, M. Svensson, M. R. Andersson, H. Neugebauer and N. S. Sariciftci, A novel polythio-phene with pendant fullerenes: toward donor/acceptor double-cable polymers, Chem. Commun., 2000, 2487–2488.

    Google Scholar 

  53. S. Campidelli, C. Klumpp, A. Bianco, D. M. Guldi and M. Prato, Functionalization of CNT: Synthesis and applications in photo-voltaics and biology, J. Phys. Org. Chem., 2006, 19, 531–539.

    Article  CAS  Google Scholar 

  54. L. Sheeney-Haj-Khia, B. Basnar and I. Willner, Efficient generation of photocurrents by using CdS/Carbon nanotube assemblies on electrodes, Angew. Chem., Int. Ed., 2005, 44, 78–83.

    Article  CAS  Google Scholar 

  55. V. Sgobba, G. M. A. Rahman, D. M. Guldi, N. Jux, S. Campidelli and M. Prato, Supramolecular assemblies of different carbon nanotubes for photoconversion processes, Adv. Mater., 2006, 18, 2264–2269.

    Article  CAS  Google Scholar 

  56. P. K. Sudeep, B. I. Ipe, K. G. Thomas, M. V. George, S. Barazzouk, S. Hotchandani and P. V. Kamat, Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly, Nano Lett., 2002, 2, 29–35.

    Article  CAS  Google Scholar 

  57. E. Katz and I. Willner, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, Properties, and applications, Angew. Chem., Int. Ed., 2004, 43, 6042–6108.

    Article  CAS  Google Scholar 

  58. E. Katz and I. Willner, Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles, Angew. Chem., Int. Ed., 2005, 44, 4791–4794.

    Article  CAS  Google Scholar 

  59. R. Gill, F. Patolsky, E. Katz and I. Willner, Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems, Angew. Chem., Int. Ed., 2005, 44, 4554–4557.

    Article  CAS  Google Scholar 

  60. R. Baron, C. H. Huang, D. M. Bassani, A. Onopriyenko, M. Zayats and I. Willner, Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications, Angew. Chem., Int. Ed., 2005, 44, 4010–4015.

    Article  CAS  Google Scholar 

  61. N. Chandrasekharan and P. V. Kamat, Assembling gold nanoparticles as nanostructured films using an electrophoretic approach, Nano Lett., 2001, 1, 67–70.

    Article  CAS  Google Scholar 

  62. M. C. Hanna and A. J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 2006, 100, 074511–074518.

    Article  CAS  Google Scholar 

  63. R. D. Schaller, J. M. Pietryga and V. I. Klimov, Carrier Multiplication in InAs Nanocrystal Quantum Dots with an Onset Defined by the Energy Conservation Limit, Nano Lett., 2007, 7, 3469–3476.

    Article  CAS  PubMed  Google Scholar 

  64. R. D. Schaller, M. Sykora, J. M. Pietryga and V. I. Klimov, Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers, Nano Lett., 2006, 6, 424–429.

    Article  CAS  PubMed  Google Scholar 

  65. I. Paci, J. C. Johnson, X. Chen, G. Rana, D. Popovic, D. E. David, A. J. Nozik, M. A. Ratner and J. Michl, Singlet Fission for Dye-Sensitized Solar Cells: Can a Suitable Sensitizer Be Found?, J. Am. Chem. Soc., 2006, 128, 16546–16553.

    Article  CAS  PubMed  Google Scholar 

  66. Sustainable Bioenergy: A Framework for Decision-Makers, UN-Energy, 2007 (http://esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf).

  67. OECD-FAO Agricultural Outlook 2007-2016 (http://www.oecd.org/dataoecd/6/10/38893266.pdf).

  68. R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Black–well Science, Oxford, 2002.

    Book  Google Scholar 

  69. Artificial Photosynthesis: From Basic Biology to Industrial Application, ed. A. F. Collings and C. Critchley, Wiley–VCH, Weinheim, Germany, 2005.

    Google Scholar 

  70. M. S. Mc Donald, Photobiology of Higher Plants, John Wiley & Sons, Chicester, 2003.

    Google Scholar 

  71. The Role of Manganese in Photosystem II, Coord. Chem. Rev., 2008, 252, 231–468.

    Article  CAS  Google Scholar 

  72. Revealing how nature uses sunlight to split water, Philos. Trans. R. Soc. London, Ser. B, 2008, 363, 1125–1303.

    Article  Google Scholar 

  73. Special issue dedicated to James Barber, Photochem. Photobiol. Sci., 2005, 4, 927–1094.

    Article  CAS  Google Scholar 

  74. Special issue on hydrogenases, Coord. Chem. Rev., 2005, 249, 1517–1690.

    Article  CAS  Google Scholar 

  75. G. R. Fleming, J. L. Martin and J. Breton, Rates Of Primary Electron-Transfer In Photosynthetic Reaction Centers And Their Mechanistic Implications, Nature, 1988, 333, 190–192.

    Article  CAS  Google Scholar 

  76. G. R. Fleming and R. vanGrondelle, Femtosecond spectroscopy of photosynthetic light-harvesting systems, Curr. Opin. Struct. Biol., 1997, 7, 738–748.

    Article  CAS  PubMed  Google Scholar 

  77. C. K. Chan, T. J. Dimagno, L. X. Q. Chen, J. R. Norris and G. R. Fleming, Mechanism Of The Initial Charge Separation In Bacterial Photosynthetic Reaction Centers, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 11202–11206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. L. Dimagno, C. K. Chan, Y. W. Jia, M. J. Lang, J. R. Newman, L. Mets, G. R. Fleming and R. Haselkorn, Energy-Transfer And Trapping In Photosystem-I Reaction Centers From Cyanobacteria, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 2715–2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. T. G. Owens, S. P. Webb, L. Mets, R. S. Alberte and G. R. Fleming, Antenna Size Dependence Of Fluorescence Decay In The Core Antenna Of Photosystem-I - Estimates Of Charge Separation And Energy-Transfer Rates, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 1532–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. P. Faller, A. Pascal and A. W. Rutherford, beta-carotene redox reactions in photosystem II: Electron transfer pathway, Biochemistry, 2001, 40, 6431–6440.

    Article  CAS  PubMed  Google Scholar 

  81. C. C. Gradinaru, J. T. M. Kennis, E. Papagiannakis, I. H. M. van Stokkum, R. J. Cogdell, G. R. Fleming, R. A. Niederman and R. van Grondelle, An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 2364–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. J. Hanley, Y. Deligiannakis, A. Pascal, P. Faller and A. W. Rutherford, Carotenoid oxidation in photosystem II, Biochemistry, 1999, 38, 8189–8195.

    Article  CAS  PubMed  Google Scholar 

  83. Y. Z. Ma, N. E. Holt, X. P. Li, K. K. Niyogi and G. R. Fleming, Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 4377–4382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. T. Polivka, D. Niedzwiedzki, M. Fuciman, V. Sundstrom and H. A. Frank, Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides, J. Phys. Chem. B, 2007, 111, 7422–7431.

    Article  CAS  PubMed  Google Scholar 

  85. T. Polivka and V. Sundstrom, Ultrafast dynamics of carotenoid excited states - From solution to natural and artificial systems, Chem. Rev., 2004, 104, 2021–2071.

    Article  CAS  PubMed  Google Scholar 

  86. P. J. Walla, P. A. Linden, C. P. Hsu, G. D. Scholes and G. R. Fleming, Femtosecond dynamics of the forbidden carotenoid S-1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 10808–10813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. M. Du, X. L. Xie, L. Mets and G. R. Fleming, Direct Observation Of Ultrafast Energy-Transfer Processes In Light-Harvesting Complex II, J. Phys. Chem., 1994, 98, 4736–4741.

    Article  CAS  Google Scholar 

  88. B. Gobets and R. van Grondelle, Energy transfer and trapping in photosystem I, Biochim. Biophys. Acta-Bioenerg., 2001, 1507, 80–99.

    Article  CAS  Google Scholar 

  89. R. van Grondelle and V. Novoderezhkin, Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria, Biochemistry, 2001, 40, 15057–15068.

    Article  PubMed  CAS  Google Scholar 

  90. R. van Grondelle and V. I. Novoderezhkin, Energy transfer in photosynthesis: experimental insights and Quantitative models, Phys. Chem. Chem. Phys., 2006, 8, 793–807.

    Article  PubMed  Google Scholar 

  91. D. Zigmantas, R. G. Hiller, V. Sundstrom and T. Polivka, Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 16760–16765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. J. P. Dekker and R. Van Grondelle, Primary charge separation in Photosystem II, Photosynth. Res., 2000, 63, 195–208.

    Article  CAS  PubMed  Google Scholar 

  93. A. R. Holzwarth, M. G. Mueller, M. Reus, M. Nowaczyk, J. Sander and M. Roegner, Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 6895–6900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. B. Zietz, V. I. Prokhorenko, A. R. Holzwarth and T. Gillbro, Comparative Study of the Energy Transfer Kinetics in Artificial BChl e Aggregates Containing a BChl a Acceptor and BChl e-Containing Chlorosomes of Chlorobium phaeobacteroides, J. Phys. Chem. B, 2006, 110, 1388–1393.

    Article  CAS  Google Scholar 

  95. A. R. Holzwarth, M. G. Mueller, J. Niklas and W. Lubitz, Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor, Biophys. J., 2006, 90, 552–565.

    Article  CAS  PubMed  Google Scholar 

  96. M. G. Mueller, J. Niklas, W. Lubitz and A. R. Holzwarth, Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I, Biophys. J., 2003, 85, 3899–3922.

    Article  CAS  Google Scholar 

  97. V. I. Prokhorenko and A. R. Holzwarth, Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study, J. Phys. Chem. B, 2000, 104, 11563–11578.

    Article  CAS  Google Scholar 

  98. T. Polivka, T. Pullerits, H. A. Frank, R. J. Cogdell and V. Sundström, Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria, J. Phys. Chem. B, 2004, 108, 15398–15407.

    Article  CAS  Google Scholar 

  99. T. Pullerits and V. Sundstrom, Photosynthetic Light-Harvesting Pigment-Protein Complexes: Toward Understanding How and Why, Acc. Chem. Res., 1996, 29, 381–389.

    Article  CAS  Google Scholar 

  100. T. Polivka and V. Sundstrom, Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems, Chem. Rev., 2004, 104, 2021–2072.

    Article  CAS  PubMed  Google Scholar 

  101. N. Krauss, W. Hinrichs, I. Witt, P. Fromme, W. Pritzkow, Z. Dauter, C. Betzel, K. S. Wilson, H. T. Witt and W. Saenger, 3-Dimensional Structure Of System-I Of Photosynthesis At 6 Angstrom Resolution, Nature, 1993, 361, 326–331.

    Article  CAS  Google Scholar 

  102. N. Krauss, W. D. Schubert, O. Klukas, P. Fromme, H. T. Witt and W. Saenger, Photosystem I at 4 angstrom resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna, system, Nat. Struct. Mol. Biol., 1996, 3, 965–973.

    Article  CAS  Google Scholar 

  103. W. D. Schubert, O. Klukas, N. Krauss, W. Saenger, P. Fromme and H. T. Witt, Photosystem I of Synechococcus elongatus at 4 angstrom resolution: Comprehensive structure analysis, J. Mol. Biol., 1997, 272, 741–769.

    Article  CAS  PubMed  Google Scholar 

  104. A. Zouni, H. T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger and P. Orth, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution, Nature, 2001, 409, 739–743.

    Article  CAS  PubMed  Google Scholar 

  105. A. Amunts, O. Drory and N. Nelson, The structure of a plant photosystem I supercomplex at 3.4 angstrom resolution, Nature, 2007, 447, 58–63.

    Article  CAS  PubMed  Google Scholar 

  106. A. Ben-Shem, F. Frolow and N. Nelson, Crystal structure of plant photosystem I, Nature, 2003, 426, 630–635.

    Article  CAS  PubMed  Google Scholar 

  107. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger and N. Krauss, Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution, Nature, 2001, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  108. K. H. Rhee, E. P. Morriss, J. Barber and W. Kuhlbrandt, Three-dimensional structure of the plant photosystem II reaction centre at 8 angstrom resolution, Nature, 1998, 396, 283–286

    Article  CAS  PubMed  Google Scholar 

  109. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Architecture of the Photosynthetic Oxygen-Evolving Center, Science, 2004, 303, 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  110. B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Towards complete cofactor arrangement in the 3.0 angstrom resolution structure of photosystem II, Nature, 2005, 438, 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  111. G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwait-elawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs, Crystal-Structure Of An Integral Membrane Light-Harvesting Complex From Photosynthetic Bacteria, Nature, 1995, 374, 517–521.

    Article  CAS  Google Scholar 

  112. Z. F. Liu, H. C. Yan, K. B. Wang, T. Y. Kuang, J. P. Zhang, L. L. Gui, X. M. An and W. R. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution, Nature, 2004, 428, 287–292.

    Article  CAS  PubMed  Google Scholar 

  113. J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni and V. K. Yachandra, Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster, Science, 2006, 314, 821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. A. W. Rutherford and P. Faller, Photosystem II: evolutionary perspectives, Philos. Trans. R. Soc. London, Ser. B, 2003, 358, 245–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. P. Fromme and P. Mathis, Unraveling the Photosystem I reaction center: a history, or the sum of many efforts, Photosynth. Res., 2004, 80, 109–124.

    Article  CAS  PubMed  Google Scholar 

  116. N. Nelson and A. Ben-Shem, Photosystem I reaction center: past and future, Photosynth. Res., 2002, 73, 193–206.

    Article  CAS  PubMed  Google Scholar 

  117. J. Barber and J. W. Murray, Revealing the structure of the Mn-cluster of photosystem 11 by X-ray crystallography, Coord. Chem. Rev., 2008, 252, 233–243.

    Article  CAS  Google Scholar 

  118. S. Vasil’ev, P. Orth, A. Zouni, T. G. Owens and D. Bruce, Excited-state dynamics in photosystem II: Insights from the X-ray crystal structure, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 8602–8607.

    Article  PubMed  PubMed Central  Google Scholar 

  119. M. Byrdin, P. Jordan, N. Krauss, P. Fromme, D. Stehlik and E. Schlodder, Light harvesting in photosystem I: Modeling based on the 2.5-angstrom structure of photosystem I from Synechococcus elongatus, Biophys. J., 2002, 83, 433–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. V. Sundstrom and T. Pullerits, R. van Grondelle, Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit, J. Phys. Chem. B, 1999, 103, 2327–2346.

    Article  Google Scholar 

  121. A. W. Rutherford and A. Boussac, Water photolysis in biology, Science, 2004, 303, 1782–1784.

    Article  CAS  PubMed  Google Scholar 

  122. C. Goussias, A. Boussac and A. W. Rutherford, Photosystem II and photosynthetic oxidation of water: an overview, Philol. Trans. R. Soc. London, Ser. B, 2002, 357, 1369–1381.

    Article  CAS  Google Scholar 

  123. F. Rappaport and B. A. Diner, Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II, Coord. Chem. Rev., 2008, 252, 259–272.

    Article  CAS  Google Scholar 

  124. J. P. McEvoy and G. W. Brudvig, Water-splitting chemistry of photosystem II, Chem. Rev., 2006, 106, 4455.

    Article  CAS  PubMed  Google Scholar 

  125. M. Haumann, P. Liebisch, C. Muller, M. Barra, M. Grabolle and H. Dau, Photosynthetic O2 formation tracked by time-resolved X-ray experiments, Science, 2005, 310, 1019–1021.

    Article  CAS  PubMed  Google Scholar 

  126. P. Kurz, G. Berggren, M. F. Anderlund and S. Styring, Oxygen evolving reactions catalysed by synthetic manganese complexes: A systematic screening, Dalton Trans., 2007, 4258–4261.

    Google Scholar 

  127. S. Mukhopadhyay, S. K. Mandal, S. Bhaduri and W. H. Armstrong, Manganese clusters with relevance to photosystem II, Chem. Rev., 2004, 104, 3981–4026.

    Article  CAS  PubMed  Google Scholar 

  128. W. Junge, M. Haumann, R. Ahlbrink, A. Mulkidjanian and J. Clausen, Electrostatics and proton transfer in photosynthetic water oxidation, Philos. Trans. R. Soc. London, Ser. B, 2002, 357, 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. G. Renger, Coupling of electron and proton transferin oxidative water cleavage in photosynthesis, Biochim. Biophys. Acta-Bioenerg., 2004, 1655, 195–204

    Article  CAS  Google Scholar 

  130. C. Tommos and G. T. Babcock, Proton and hydrogen currents in photosynthetic water oxidation, Biochim. Biophys. Acta-Bioenerg., 2000, 1458, 199–219.

    Article  CAS  Google Scholar 

  131. P. Faller, C. Goussias, A. W. Rutherford and S. Un, Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 8732–8735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. L. Hammarstrom and S. Styring, Coupled electron transfers in artificial photosynthesis, Philos. Trans. R. Soc. London, Ser. B, 2008, 363, 1283–1291.

    Article  PubMed  CAS  Google Scholar 

  133. T. Irebo, S. Y. Reece, M. Sjodin, D. G. Nocera and L. Hammarstrom, Proton-coupled electron transfer of tyrosine oxidation: Buffer dependence and parallel mechanisms, J. Am. Chem. Soc., 2007, 129, 15462–15464.

    Article  CAS  PubMed  Google Scholar 

  134. For a review, see:T. J. Meyer, M. H. V. Huynh and H. H. Thorp, The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II, Angew. Chem., Int. Ed., 2007, 46, 5284–5304.

    Article  CAS  Google Scholar 

  135. J. Rosenthal and D. G. Nocera, Role of Proton-Coupled Electron Transfer in O-O Bond Activation, Acc. Chem. Res., 2007, 40, 543–553.

    Article  CAS  PubMed  Google Scholar 

  136. S.-Y. Liu and D. G. Nocera, Hangman Salophens, J. Am. Chem. Soc., 2005, 127, 5278–5279.

    Article  CAS  PubMed  Google Scholar 

  137. S. W. Gersten, G. J. Samuels and T. J. Meyer, Catalytic-Oxidation Of Water By An Oxo-Bridged Ruthenium Dimer, J. Am. Chem. Soc., 1982, 104, 4029–4030.

    Article  CAS  Google Scholar 

  138. T. J. Meyer, Chemical Approaches To Artificial Photosynthesis, Acc. Chem. Res., 1989, 22, 163–170.

    Article  CAS  Google Scholar 

  139. A. K. M. K. Ramasamy Ramaraj, O2-Generation by Oxidation of Water with Di-and Trinuclear Ruthenium Complexes as Homogeneous and Heterogeneous Catalysts, Angew. Chem., Int. Ed. Engl., 1986, 25, 1009–1011.

    Article  Google Scholar 

  140. M. Yagi and M. Kaneko, Molecular catalysts for water oxidation, Chem. Rev., 2001, 101, 21–35.

    Article  CAS  PubMed  Google Scholar 

  141. F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 2008, 20, 35–54.

    Article  CAS  Google Scholar 

  142. R. Lomoth, A. Magnuson, M. Sjoedin, P. Huang, S. Styring and L. Hammarstroem, Mimicking the electron donor side of Photosystem II in artificial photosynthesis, Photosynth. Res., 2006, 87, 25–40.

    Article  CAS  PubMed  Google Scholar 

  143. M. Borgstrom, N. Shaikh, O. Johansson, F. Anderlund Magnus, S. Styring, B. Akermark, A. Magnuson and L. Hammarstrom, Light induced manganese oxidation and long-lived charge separation in a Mn2II,II-RuII(bpy)3-acceptor triad, J. Am. Chem. Soc., 2005, 127, 17504–17515.

    Article  PubMed  CAS  Google Scholar 

  144. S. Romain, J. C. Lepretre, J. Chauvin, A. Deronzier and M. N. Collomb, Di(l-oxo) binuclear manganese(III,IV) poly(bipyridyl) complexes bearing four ruthenium(II) photoactive units: Synthesis, characterization, and photoinduced electron-transfer properties, In-org. Chem., 2007, 46, 2735–2743.

    CAS  Google Scholar 

  145. L. Hammarstrom, Towards artificial photosynthesis: ruthenium-manganese chemistry mimicking photosystem II reactions, Curr. Opin. Chem. Biol., 2003, 7, 666–673.

    Article  CAS  PubMed  Google Scholar 

  146. M. Falkenstrom, O. Johansson and L. Hammarstrom, Light-induced charge separation in ruthenium based triads - New variations on an old theme, Inorg. Chim. Acta, 2007, 360, 741–750.

    Article  CAS  Google Scholar 

  147. L. C. Sun, L. Hammarstrom, B. Akermark and S. Styring, Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production, Chem. Soc. Rev., 2001, 30, 36–49.

    Article  CAS  Google Scholar 

  148. A. Moradpour, E. Amouyal, P. Keller and H. Kagan, Hydrogen production by visible-light irradiation of aqueous-solutions of Ru (Bipy)23+, New J. Chem., 1978, 2, 547–549.

    CAS  Google Scholar 

  149. J. M. Lehn and J. P. Sauvage, Chemical storage of light energy - catalytic generation of hydrogen by visible-light or sunlight -Irradiation of neutral aqueous-solutions, New J. Chem., 1977, 1, 449–451.

    CAS  Google Scholar 

  150. For an indepth-discussion of this topic, see Inorg. Chem., 2006, 45, 1880, special issue “Forum on solar and renewable energy”.

  151. D. J. Evans and C. J. Pickett, Chemistry and the hydrogenases, Chem. Soc. Rev., 2003, 32, 268.

    Article  PubMed  CAS  Google Scholar 

  152. W. Lubitz, E. Reijerse and M. van Gastel, [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques, Chem. Rev., 2007, 107, 4331.

    Article  CAS  PubMed  Google Scholar 

  153. M. Pavlov, Mechanism of H-H activation by nickel-iron hydrogenase, J. Am. Chem. Soc., 1998, 120, 548.

    Article  CAS  Google Scholar 

  154. C. Mealli and T. B. Rauchfuss, Models for the Hydrogenases Put the Focus Where it Should be - Hydrogen, Angew. Chem., Int. Ed., 2007, 46, 8942–8944.

    Article  CAS  Google Scholar 

  155. J. Wang, Y.-Q. Fang, L. Bourget-Merle, M. I. J. Polson, G. S. Hanan, A. Juris, F. Loiseau and S. Campagna, The multichromophore approach: prolonged room-temperature luminescence lifetimes in RuII complexes based on tridentate polypyridine ligands, Chem. Eur. J., 2006, 12, 8539–8548.

    Article  CAS  PubMed  Google Scholar 

  156. N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli and S. Campagna, Excited-state equilibration: a process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular structures, Coord. Chem. Rev., 2005, 249, 1336–1350.

    Article  CAS  Google Scholar 

  157. R. Berera, I. H. M. van Stokkum, G. Kodis, A. E. Keirstead, S. Pillai, C. Herrero, R. E. Palacios, M. Vengris, R. van Grondelle, D. Gust, T. A. Moore, A. L. Moore and J. T. M. Kennis, Energy Transfer, Excited-State Deactivation, and Exciplex Formation in Artificial Caroteno-Phthalocyanine Light-Harvesting Antennas, J. Phys. Chem. B, 2007, 111, 6868–6877.

    Article  CAS  Google Scholar 

  158. A. N. MacPherson, P. A. Liddell, D. Kuciauskas, D. Tatman, T. Gillbro, D. Gust, T. A. Moore and A. L. Moore, Ultrafast Energy Transfer from a Carotenoid to a Chlorin in a Simple Artificial Photosynthetic Antenna, J. Phys. Chem. B, 2002, 106, 9424–9433.

    Article  CAS  Google Scholar 

  159. D. Gust, T. A. Moore and A. L. Moore, Mimicking Photosynthetic Solar Energy Transduction, Acc. Chem. Res., 2001, 34, 40–48.

    Article  CAS  PubMed  Google Scholar 

  160. S. C. Lo and P. L. Burn, Development of Dendrimers: Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells, Chem. Rev., 2007, 107, 1097–1116.

    Article  CAS  PubMed  Google Scholar 

  161. F. Puntoriero, F. Nastasi, M. Cavazzini, S. Quici and S. Campagna, Coupling synthetic antenna and electron donor species: A tetranuclear mixed-metal Os(II)-Ru(II) dendrimer containing six phenothiazine donor subunits at the periphery, Coord. Chem. Rev., 2007, 251, 536–545.

    Article  CAS  Google Scholar 

  162. U. Hahn, M. Gorka, F. Vogtle, V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani, Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types, Angew. Chem., Int. Ed., 2002, 41, 3595–3598.

    Article  CAS  Google Scholar 

  163. A. M. Garcia, F. J. Romero-Salguero, D. M. Bassani, J. M. Lehn, G. Baum and D. Fenske, Self-assembly and characterization of multimetallic grid-type lead(II) complexes, Chem.-Eur. J., 1999, 5, 1803–1808.

    Article  CAS  Google Scholar 

  164. S. L. Gould, G. Kodis, P. A. Liddell, R. E. Palacios, A. Brune, D. Gust, T. A. Moore and A. L. Moore, Artificial photosynthetic reaction centers with carotenoid antennas, Tetrahedron, 2006, 62, 2074–2096.

    Article  CAS  Google Scholar 

  165. Y. Terazono, P. A. Liddell, V. Garg, G. Kodis, A. Brune, M. Hambourger, A. L. Moore, T. A. Moore and D. Gust, Artificial photosynthetic antenna-reaction center complexes based on a hexaphenylbenzene core, J. Porphyrins Phthalocyanines, 2005, 9, 706–723.

    Article  CAS  Google Scholar 

  166. Y. Terazono, G. Kodis, P. A. Liddell, V. Garg, M. Gervaldo, T. A. Moore, A. L. Moore and D. Gust, Photoinduced electron transfer in a hexaphenylbenzene-based self-assembled porphyrin-fullerene triad, Photochem. Photobiol., 2007, 83, 464–469.

    Article  CAS  PubMed  Google Scholar 

  167. G. Kodis, Y. Terazono, P. A. Liddell, J. Andreasson, V. Garg, M. Hambourger, T. A. Moore, A. L. Moore and D. Gust, Energy and Photoinduced Electron Transfer in a Wheel-Shaped Artificial Photosynthetic Antenna-Reaction Center Complex, J. Am. Chem. Soc., 2006, 128, 1818–1827.

    Article  CAS  PubMed  Google Scholar 

  168. Communication from the Commission “Action Plan for Energy Efficiency: Realising the Potential” [COM(2006) 545].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario M. Bassani.

Additional information

This paper was published as part of the themed issue in honour of Jakob Wirz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CC., Bassani, D.M. Challenges and opportunities for photochemists on the verge of solar energy conversion. Photochem Photobiol Sci 7, 521–530 (2008). https://doi.org/10.1039/b800113h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b800113h

Navigation