Skip to main content

Advertisement

Log in

Molecular properties of R-phycocyanin subunits from Polysiphonia urceolata in potassium phosphate buffer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The two subunits of R-phycocyanin from Polysiphonia urceolata were isolated and renatured. The renatured subunits were characterized by electrophoresis, molecular weights and spectra. The blue-shifted spectra, fluorescence recovery and restoring of the energy transfer suggested correct refolding of the subunits. The molecular properties of the subunits in potassium phosphate buffer (KPB) were investigated in detail. The total fluorescence yields (QT) of the β subunit declined while the energy transfer efficiency (ET) in the β subunit was promoted with the increase of KPB concentration. On the other hand, both QT and ET were enhanced with the increasing of the subunit concentrations. Based on the structural information, the fluorescence quenching in high concentrations of KPB was ascribed to less rigid chromophores caused by the weakening of the hydrogen-bond interaction network, while the enhancement of the fluorescence and ET was due to the aggregation of the subunits in the ionic solvent. Aggregation was confirmed by cysteine-assisted promotion of renaturation yield and stability, as well as equilibrium unfolding tests. Optimal conditions were proposed for the refolding/unfolding studies, under which the subunits were mainly monomeric. Compared to that in C-PC, the blue-shifted spectrum of PCB in R-PC is suggested to bring larger energy transfer efficiency, probably due to the necessity of the light harvesting for P. urceolata living in deep water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Glazer J. Appl. Phycol., 1994, 6, 105–112.

    Article  CAS  Google Scholar 

  2. N. T. Marsac Photosynth. Res., 2003, 76, 197–205.

    Google Scholar 

  3. R. MacColl, D. Guard-Friar, in Phycobiliproteins, CRC Press, Boca Raton, Florida, 1987, pp 218–223.

    Google Scholar 

  4. H. Scheer Angew. Chem., Int. Ed. Engl., 1981, 20, 241–261.

    Article  Google Scholar 

  5. H. Scheer, H. Formanek, S. Schneider Photochem. Photobiol., 1982, 36, 259–272.

    Article  CAS  PubMed  Google Scholar 

  6. H. Pan, D. L. Smith Biochemistry, 2003, 42, 5713–5721.

    Article  CAS  PubMed  Google Scholar 

  7. V. K. Dubey, M. V. Jagannadham Biochemistry, 2003, 42, 12287–12297.

    Article  CAS  PubMed  Google Scholar 

  8. M. Parisi, A. Mazzini, R. T. Sorbi, R. Ramoni, S. Grolli, R. Favilla Biochim. Biophys. Acta, 2003, 1652, 115–125.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Wei, J. C. Horng, A. C. Vendel, D. P. Raleigh, K. J. Lumb Biochemistry, 2003, 42, 7044–7049.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Xie, H. Zhou Int. J. Biochem. Cell Biol., 2004, 36, 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  11. J. Chen, S. L. Flaugh, P. R. Callis, J. King Biochemistry, 2006, 45, 11552–11563.

    Article  CAS  PubMed  Google Scholar 

  12. C. Chen, D. S. Berns Biophys. Chem., 1978, 8, 203–213.

    Article  CAS  PubMed  Google Scholar 

  13. C. Chen, I. Liu, R. MacColl, D. S. Berns Biopolymers, 1982, 22, 1223–1233.

    Article  Google Scholar 

  14. K. L. Thoren, K. B. Connell, T. E. Robinson, D. D. Shellhamer, M. S. Tammaro, Y. M. Gindt Biochemistry, 2006, 45, 12050–12059.

    Article  CAS  PubMed  Google Scholar 

  15. T. Jiang, J. Zhang, W. Chang, D. Liang Biophys. J., 2001, 81, 1171–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Ha Methods, 2001, 25, 78–86.

    Article  CAS  PubMed  Google Scholar 

  17. E. Rhoades, E. Gussakovsky, G. Haran Proc. Natl. Acad. Sci. USA, 2003, 100, 3197–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Ma, J. Xie, C. Zhang, J. Zhao Biochem. Biophys. Res. Commun., 2007, 352, 787–793.

    Article  CAS  PubMed  Google Scholar 

  19. F. Zeng, Z. Yang, L. Jiang Hydrobiologia, 1984, 116/117, 594–596.

    Article  Google Scholar 

  20. R. Swanson, L. J. Ong, S. M. Wilbanks, A. N. Glaze J. Biol. Chem., 1991, 266, 9528–9534.

    Article  CAS  PubMed  Google Scholar 

  21. A. N. Glazer, S. Fang, D. M. Brown J. Biol. Chem., 1973, 248, 5679–5685.

    Article  CAS  PubMed  Google Scholar 

  22. A. N. Glazer, C. S. Hixson J. Biol. Chem., 1975, 250, 5487–5495.

    Article  CAS  PubMed  Google Scholar 

  23. J. Xie, D. Li, J. Zhang, J. Zhao New J. Chem., 2003, 27, 395–398.

    Article  CAS  Google Scholar 

  24. U. K. Laemmli Nature, 1970, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  25. R. F. Kubin, A. N. Fletch J. Lumin., 1983, 27, 455–462.

    Article  CAS  Google Scholar 

  26. E. Gantt, C. A. Lipschultz Biochemistry, 1974, 13, 2960–2966.

    Article  CAS  PubMed  Google Scholar 

  27. A. A. Demidov, M. Mimuro Biophys. J., 1995, 68, 1500–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. P. Debreczeny, K. Sauer, J. Zhou, D. A. Bryant J. Phys. Chem., 1993, 97, 9852–9862.

    Article  CAS  Google Scholar 

  29. M. P. Debreczeny, K. Sauer, J. Zhou, D. A. Bryant J. Phys. Chem., 1995, 99, 8420–8431.

    Article  CAS  Google Scholar 

  30. S. Benedetti, S. Rinalducci, F. Benvenuti, S. Francogli, S. Pagliarani, L. Giorgi, M. Micheloni, G. M. D’Amici, L. Zolla, F. Canestrari J. Chromatogr., B: Biomed. Appl., 2006, 833, 12–18.

    Article  CAS  Google Scholar 

  31. A. N. Glazer Annu. Rev. Biophys. Biophys. Chem., 1985, 14, 47–77.

    Article  CAS  PubMed  Google Scholar 

  32. J. R. Sears, R. T. Wilce Eco. Monog., 1975, 45, 337–365.

    Article  Google Scholar 

  33. A. Parbel, K. H. Zhao, J. Breton, H. Scheer Photosynth. Res., 1997, 54, 25–34.

    Article  CAS  Google Scholar 

  34. P. Zehetmayer, M. Kupka, H. Scheer, A. Zumbusch Biochim. Biophys. Acta, 2004, 1608, 35–44.

    Article  CAS  PubMed  Google Scholar 

  35. T. Förster, in Comprehensive Biochemistry, ed. M. Florkin and E. H. Stotz, Elsevier, Amsterdam, 1967, pp. 61–80.

  36. C. N. Pace, D. V. Laurents, J. A. Thomson Biochemistry, 1990, 29, 2564–2572.

    Article  CAS  PubMed  Google Scholar 

  37. M. M. Santoro, D. W. Bolen Biochemistry, 1988, 27, 8063–8068.

    Article  CAS  PubMed  Google Scholar 

  38. B. A. Zilinskas, E. G. Richard Plant Physiol., 1981, 68, 447–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D. S. Berns, R. MacColl Chem. Rev., 1989, 89, 807–825.

    Article  CAS  Google Scholar 

  40. R. MacColl, G. O’Conner, G. Grofton Photochem. Photobiol., 1981, 34, 719–723.

    Article  CAS  Google Scholar 

  41. R. F. Murphy, P. O’Carra Biochim. Biophys. Acta, 1971, 214, 371–373.

    Article  Google Scholar 

  42. C. N. Pace Trends Biotechnol., 1990, 8, 93–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xie or Jingquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Xie, J., Zhang, R. et al. Molecular properties of R-phycocyanin subunits from Polysiphonia urceolata in potassium phosphate buffer. Photochem Photobiol Sci 7, 263–268 (2008). https://doi.org/10.1039/b714837b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b714837b

Navigation