Skip to main content
Log in

Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The Renilla bioluminescent system in vivo is comprised of three proteins—the luciferase, green-fluorescent protein, and coelenterazine-binding protein (CBP), previously called luciferin-binding protein (LBP). This work reports the cloning of the full-size cDNA encoding CBP from soft coral Renilla muelleri, its overexpression and properties of the recombinant protein. The apo-CBP was quantitatively converted to CBP by simple incubation with coelenterazine. The physicochemical properties of this recombinant CBP are determined to be practically the same as those reported for the CBP (LBP) of R. reniformis. CBP is a member of the four-EF-hand Ca2+-binding superfamily of proteins with only three of the EF-hand loops having the Ca2+-binding consensus sequences. There is weak sequence homology with the Ca2+-regulated photoproteins but only as a result of the necessary Ca2+-binding loop structure. In combination with Renilla luciferase, addition of only one Ca2+ is sufficient to release the coelenterazine as a substrate for the luciferase for bioluminescence. This combination of the two proteins generates bioluminescence with higher reaction efficiency than using free coelenterazine alone as the substrate for luciferase. This increased quantum yield, a difference of bioluminescence spectra, and markedly different kinetics, implicate that a CBP-luciferase complex might be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Vysotski, J. Lee, Ca2+-regulated photoproteins: Structural insight into the bioluminescence mechanism Acc. Chem. Res., 2004, 37, 405–415.

    Article  CAS  PubMed  Google Scholar 

  2. O. Shimomura, The discovery of aequorin and green fluorescent protein J. Microsc., 2005, 217, 1–15.

    Article  CAS  PubMed  Google Scholar 

  3. K. Teranishi, Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds Bioorg. Chem., 2007, 35, 82–111.

    Article  CAS  PubMed  Google Scholar 

  4. K. Hori, H. Charbonneau, R. C. Hart, M. J. Cormier, Structure of native Renilla reniformis luciferin Proc. Natl. Acad. Sci. USA, 1977, 74, 4285–4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Verhaegent, T. K. Christopoulos, Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization Anal. Chem., 2002, 74, 4378–4385.

    Article  PubMed  CAS  Google Scholar 

  6. S. V. Markova, S. Golz, L. A. Frank, B. Kalthof, E. S. Vysotski, Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme J. Biol. Chem., 2004, 279, 3212–3217.

    Article  CAS  PubMed  Google Scholar 

  7. J. W. Hastings, Bioluminescence, in Cell Physiology, 3rd edn, ed. N. Sperelakis, Academic Press, New York, 2001, pp. 1115–1130.

    Google Scholar 

  8. O. Shimomura, Membrane permeability of coelenterazine analogues measured with fish eggs Biochem. J., 1997, 326, 297–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. J. Liu, E. S. Vysotski, C. J. Chen, J. P. Rose, J. Lee, B. C. Wang, Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure Protein Sci., 2000, 9, 2085–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. F. Head, S. Inouye, K. Teranishi, O. Shimomura, The crystal structure of the photoprotein aequorin at 2.3 angstrom resolution Nature, 2000, 405, 372–376.

    Article  CAS  PubMed  Google Scholar 

  11. Z. J. Liu, E. S. Vysotski, L. Deng, J. Lee, J. Rose, B. C. Wang, Atomic resolution structure of obelin: Soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine Biochem. Biophys. Res. Commun., 2003, 311, 433–439.

    Article  CAS  PubMed  Google Scholar 

  12. L. Deng, S. V. Markova, E. S. Vysotski, Z. J. Liu, J. Lee, J. Rose, B. C. Wang, Crystal structure of a Ca2+-discharged photoprotein: Implications for mechanisms of the calcium trigger and bioluminescence J. Biol. Chem., 2004, 279, 33647–33652.

    Article  CAS  PubMed  Google Scholar 

  13. L. Deng, E. S. Vysotski, S. V. Markova, Z. J. Liu, J. Lee, J. Rose, B. C. Wang, All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin Protein Sci., 2005, 14, 663–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Z. J. Liu, G. A. Stepanyuk, E. S. Vysotski, J. Lee, S. V. Markova, N. P. Malikova, B. C. Wang, Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state Proc. Natl. Acad. Sci. USA, 2006, 103, 2570–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Charbonneau, M. J. Cormier, Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of calcium-triggered luciferin-binding protein J. Biol. Chem., 1979, 254, 769–780.

    Article  CAS  PubMed  Google Scholar 

  16. J. W. Hastings, J. C. Dunlap, Cell-free components in dinoflagellate bioluminescence. The particulate activity: scintillons; the soluble components: luciferase; luciferin, and luciferin-binding protein Methods Enzymol., 1986, 133, 307–327.

    Article  CAS  Google Scholar 

  17. J. C. Matthews, K. Hori, M. J. Cormier, Substrate and substrate analogue binding properties of Renilla luciferase Biochemistry, 1977, 16, 5217–5220.

    Article  CAS  PubMed  Google Scholar 

  18. J. C. Matthews, K. Hori, M. J. Cormier, Purification and properties of Renilla reniformis luciferase Biochemistry, 1977, 16, 85–91.

    Article  CAS  PubMed  Google Scholar 

  19. W. W. Ward, M. J. Cormier, An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein J. Biol. Chem., 1979, 254, 781–788.

    Article  CAS  PubMed  Google Scholar 

  20. W. W. Lorenz, R. O. McCann, M. Longiaru, M. J. Cormier, Isolation and expression of a cDNA encoding Renilla reniformis luciferase Proc. Natl. Acad. Sci. USA, 1991, 88, 4438–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Kumar, M. Harrylock, K. A. Walsh, M. J. Cormier, H. Charbonneau, Amino acid sequence of the Ca2+-triggered luciferin binding protein of Renilla reniformis FEBS Lett., 1990, 268, 287–290.

    Article  CAS  PubMed  Google Scholar 

  22. S. Inoyue, Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis Protein Expr. Purif., 2007, 52, 66–73.

    Article  CAS  Google Scholar 

  23. B. A. Illarionov, L. A. Frank, V. A. Illarionova, V. S. Bondar, E. S. Vysotski, J. R. Blinks, Recombinant obelin: Cloning and expression of cDNA, purification and characterization as calcium indicator Methods Enzymol., 2000, 305, 223–249.

    Article  CAS  PubMed  Google Scholar 

  24. S. V. Markova, E. S. Vysotski, J. R. Blinks, L. P. Burakova, B. C. Wang, J. Lee, Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins Biochemistry, 2002, 41, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  25. M. Klabusay, J. R. Blinks, Some commonly overlooked properties of calcium buffer systems: A simple method for detecting and correcting stoichiometric imbalance in CaEGTA stock solutions Cell Calcium, 1996, 20, 227–234.

    Article  CAS  PubMed  Google Scholar 

  26. W. J. Cook, S. E. Ealick, Y. S. Babu, J. A. Cox, S. Vijay-Kumar, Three-dimensional structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor J. Biol. Chem., 1991, 266, 652–656.

    Article  CAS  PubMed  Google Scholar 

  27. N. D. Moncrief, R. H. Kretsinger, M. Goodman, Evolution of EF-hand calcium-modulated proteins. I. Relationships, based on amino acid sequences J. Mol. Evol., 1990, 30, 522–562.

    Article  CAS  PubMed  Google Scholar 

  28. N. C. Strynadka, M. N. James, Crystal structures of the helix-loop-helix calcium-binding proteins Annu. Rev. Biochem., 1989, 58, 951–998.

    Article  CAS  PubMed  Google Scholar 

  29. E. S. Vysotski, Z. J. Liu, J. Rose, B. C. Wang, J. Lee, Preparation and X-ray crystallographic analysis of recombinant obelin crystals diffracting to beyond 1.1 Å Acta Crystallogr., Sect. D: Biol. Crystallogr., 2001, 57, 1919–1921.

    Article  CAS  Google Scholar 

  30. O. Shimomura, Y. Kishi, S. Inouye, The relative rate of aequorin regeneration from apoaequorin and coelenterazine analogues Biochem. J., 1993, 296, 549–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. P. Malikova, G. S. Stepanyuk, L. A. Frank, S. V. Markova, E. S. Vysotski, J. Lee, Spectral tuning of obelin bioluminescence by mutations of Trp92 FEBS Lett., 2003, 554, 184–188.

    Article  CAS  PubMed  Google Scholar 

  32. K. Hori, J. E. Wampler, J. C. Matthews, M. J. Cormier, Identification of the product excited states during chemiluminescent and bioluminescent oxidation of Renilla (Sea Pansy) luciferin and certain of its analogs Biochemistry, 1973, 12, 4463–4468.

    Article  CAS  PubMed  Google Scholar 

  33. K. Mori, S. Maki, H. Niwa, H. Ikeda, T. Hirano, Real light emitter in the bioluminescence of the calcium-activated photoproteins aequorin and obelin: light emission from the singlet-excited state of coelenteramide phenolate anion in a contact ion pair Tetrahedron, 2006, 62, 6272–6288.

    Article  CAS  Google Scholar 

  34. D. G. Allen, J. R. Blinks, F. G. Prendergast, Aequorin luminescence: relation of light emission to calcium concentration–a calcium-independent component Science, 1977, 195, 996–998.

    Article  CAS  PubMed  Google Scholar 

  35. L. F. Greer 3rd, A. A. Szalay, Imaging of light emission from the expression of luciferases in living cells and organisms: a review Luminescence, 2002, 17, 43–74.

    Article  CAS  PubMed  Google Scholar 

  36. Y. A. Yu, T. Timiryasova, Q. Zhang, R. Beltz, A. A. Szalay, Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals Anal. Bioanal. Chem., 2003, 377, 964–972.

    Article  CAS  PubMed  Google Scholar 

  37. O. Shimomura, F. H. Johnson, Comparison of the amounts of key components in the bioluminescence systems of various coelenterates Comp. Biochem. Physiol., 1979, 64, 105–107.

    Google Scholar 

  38. H. Zhao, T. Doyle, R. J. Wong, Y. Cao, D. K. Stevenson, D. Piwnica-Worms, C. H. Contag, Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals Molecular Imaging, 2004, 3, 405–415.

    Article  Google Scholar 

  39. W. W. Ward, M. J. Cormier, In vitro energy transfer in Renilla bioluminescence J. Phys. Chem., 1976, 80, 2289–2291.

    Article  CAS  Google Scholar 

  40. M. J. Cormier, Applications of Renilla bioluminescence: An introduction Methods Enzymol., 1978, 57, 237–244.

    Article  CAS  Google Scholar 

  41. K. Hori, Y. Nakano, M. J. Cormier, Studies on the bioluminescence of Renilla reniformis. XI. Location, of the sulfate group in luciferyl sulfate Biochim. Biophys. Acta, 1972, 256, 638–644.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene S. Vysotski.

Additional information

This paper was published as part of the themed issue on bioluminescence

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titushin, M.S., Markova, S.V., Frank, L.A. et al. Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem Photobiol Sci 7, 189–196 (2008). https://doi.org/10.1039/b713109g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b713109g

Navigation