Skip to main content

Advertisement

Log in

Milestones in the development of photodynamic therapy and fluorescence diagnosis

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Many reviews on PDT have been published. This field is now so large, and embraces so many subspecialities, from laser technology and optical penetration through diffusing media to a number of medical fields including dermatology, gastroenterology, ophthalmology, blood sterilization and treatment of microbial-viral diseases, that it is impossible to cover all aspects in a single review. Here, we will concentrate on a few basic aspects, all important for the route of development leading PDT to its present state: early work on hematoporphyrin and hematoporphyrin derivative, second and third generation photosensitizers, 5-aminolevulinic acid and its derivatives, oxygen and singlet oxygen, PDT effects on cell organelles, mutagenic potential, the basis for tumour selectivity, cell cooperativity, photochemical internalization, light penetration into tissue and the significance of oxygen depletion, photobleaching of photosensitizers, optimal light sources, effects on the immune system, and, finally, future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Raab, Über die Wirkung fluoreszierender Stoffe auf Infusorien, Z. Biol., 1900, 39, 524–546.

    CAS  Google Scholar 

  2. R. Ackroyd, C. Kelty, N. Brown, M. Reed, The history of photodetection and photodynamic therapy, Photochem. Photobiol., 2001, 74, 656–669.

    Article  CAS  PubMed  Google Scholar 

  3. J. Moan, Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  4. A. F. Taub, Photodynamic therapy in dermatology: history and horizons, J. Drugs Dermatol., 2004, 3, S8–25.

    PubMed  Google Scholar 

  5. F. Meyer-Betz, Untersuchung uber die biologische (photodynamische) Wirkung des Hamatoporphyrins und anderer Derivate des Blut- und Gallenfarbstoffs, Dtsch. Arch. Klin. Med., 1913, 112, 476–503.

    Google Scholar 

  6. F. H. J. Figge, G. S. Weiland, O. J. Manganiello, Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins, Proc. Soc. Exp. Biol. Med., 1948, 68, 640–641.

    Article  CAS  PubMed  Google Scholar 

  7. S. K. Schwartz, K. Absolon, H. Vermund, Some relationships of porphyrins, X-rays and tumours, Univ. Minn. Med. Bull., 1955, 27, 7–8.

    Google Scholar 

  8. R. L. Lipson, E. J. Baldes, A. M. Olsen, The use of a derivative of hematoporhyrin in tumor detection, J. Natl. Cancer Inst., 1961, 26, 1–11.

    CAS  PubMed  Google Scholar 

  9. R. Bonnett, M. C. Berenbaum, HPD - a study of its components and their properties, Adv. Exp. Med. Biol., 1983, 160, 241–250.

    Article  CAS  PubMed  Google Scholar 

  10. J. Moan, S. Sandberg, T. Christensen, S. Elander, Hematoporphyrin derivative: chemical composition, photochemical and photosensitizing properties, Adv. Exp. Med. Biol., 1983, 160, 165–179.

    Article  CAS  PubMed  Google Scholar 

  11. T. J. Dougherty, W. R. Potter, K. R. Weishaupt, The structure of the active component of hematoporphyrin derivative, Prog. Clin. Biol. Res., 1984, 170, 301–314.

    CAS  PubMed  Google Scholar 

  12. D. Kessel, C. K. Chang, B. Musselman, Chemical, biologic and biophysical studies on ‘hematoporphyrin derivative’, Adv. Exp. Med. Biol., 1985, 193, 213–227.

    Article  CAS  PubMed  Google Scholar 

  13. D. Kessel, C. J. Byrne, A. D. Ward, Photophysical and photobiological properties of diporphyrin ethers, Photochem. Photobiol., 1991, 53, 469–474.

    Article  CAS  PubMed  Google Scholar 

  14. D. Kessel, C. J. Byrne, A. D. Ward, Configuration of triporphyrin ethers probed by fluorescence measurements, J. Photochem. Photobiol., B, 1992, 13, 153–160.

    Article  CAS  Google Scholar 

  15. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  16. Photodynamic, tumour therapy: 2nd and 3rd generation photosensitizers, ed. J. G. Moser, Harwood Academic Publishers, New Delhi, 1998.

    Google Scholar 

  17. D. Wohrle, A. Hirth, T. Bogdahn-Rai, G. Schnurpfeil, M. Shopova, Photodynamic therapy of cancer: second and third generations of photosensitizers, Russ. Chem. Bull., 1998, 47, 807–816.

    Article  CAS  Google Scholar 

  18. R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev., 1995, 24, 19–33.

    Article  CAS  Google Scholar 

  19. S. K. Pushpan, S. Venkatraman, V. G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan, T. K. Chandrashekar, Porphyrins in photodynamic therapy - a search for ideal photosensitizers, Curr. Med. Chem. Anticancer Agents, 2002, 2, 187–207.

    Article  CAS  PubMed  Google Scholar 

  20. R. R. Allison, G. H. Downie, R. Cuenca, X.-H. Hu, C. J. H. Childs, C. H. Sibata, Photosensitizers in clinical PDT, Photodiagn. Photodyn. Ther., 2004, 1, 27–42.

    Article  CAS  Google Scholar 

  21. A. P. Castano, T. N. Demidova, M. R. Hamblin, Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  22. M. R. Detty, S. L. Gibson, S. J. Wagner, Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med. Chem., 2004, 47, 3897–3915.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Huang, A review of progress in clinical photodynamic therapy, Technol. Cancer Res. Treat., 2005, 4, 283–293.

    Article  CAS  PubMed  Google Scholar 

  24. P. G. Calzavara-Pinton, M. Venturini, R. Sala, Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology, J. Eur. Acad. Dermatol. Venereol., 2007, 21, 293–302.

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Derycke, P. A. de Witte, Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes, Int. J. Oncol., 2002, 20, 181–187.

    CAS  PubMed  Google Scholar 

  26. M. R. Moore, K. E. McColl, A. Goldberg, The porphyrias, Diabete Metab., 1979, 5, 323–336.

    CAS  PubMed  Google Scholar 

  27. A. M. Batlle, Porphyrins, porphyrias, cancer and photodynamic therapy - a model for carcinogenesis, J. Photochem. Photobiol., B, 1993, 20, 5–22.

    Article  CAS  Google Scholar 

  28. S. Sassa, Hematologic aspects of the porphyrias, Int. J. Hematol., 2000, 71, 1–17.

    CAS  PubMed  Google Scholar 

  29. R. Kauppinen, Porphyrias, Lancet, 2005, 365, 241–252.

    Article  CAS  PubMed  Google Scholar 

  30. R. A. Norman, Past and future: porphyria and porphyrins, Skin Med., 2005, 4, 287–292.

    Article  Google Scholar 

  31. N. I. Berlin, A. Neuberger, J. J. Scott, The metabolism of delta-aminolaevulic acid. 2. Normal pathways, studied with the aid of 14C, Biochem. J., 1956, 64, 90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. I. Berlin, A. Neuberger, J. J. Scott, The metabolism of delta-aminolaevulic acid. 1. Normal pathways, studied with the aid of 14C, Biochem. J., 1956, 64, 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. M. d. C. Batlle, E. B. C. Llambias, E. Wider, de Xifra, H. A. Tigier, Porphyrin biosynthesis in the soybean callus tissue system-XV. The, effect of growth conditions, Int. J. Biochem., 1975, 6, 591–606.

    Article  CAS  Google Scholar 

  34. Z. Malik, H. Lugaci, Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer, 1987, 56, 589–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Q. Peng, J. F. Evensen, C. Rimington, J. Moan, A comparison of different photosensitizing dyes with respect to uptake C3H-tumors and tissues of mice, Cancer Lett., 1987, 36, 1–10.

    Article  Google Scholar 

  36. J. C. Kennedy, R. H. Pottier, D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience, J. Photochem. Photobiol., B, 1990, 6, 143–148.

    Article  CAS  Google Scholar 

  37. L. R. Braathen, R. M. Szeimies, N. Basset-Seguin, R. Bissonnette, P. Foley, D. Pariser, R. Roelandts, A. M. Wennberg, C. A. Morton, Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus, International Society for Photodynamic Therapy in Dermatology, 2005, J. Am. Acad. Dermatol., 2007, 56, 125–143.

    Article  PubMed  Google Scholar 

  38. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky, J. M. Nesland, 5-Aminolevulinic acid–based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.

    Article  CAS  PubMed  Google Scholar 

  39. E. L. Taylor, S. B. Brown, The advantages of aminolevulinic acid photodynamic therapy in dermatology, J. Dermatol. Treat., 2002, 13(Suppl 1), S3–11.

    Article  CAS  Google Scholar 

  40. E. Malik, C. Berg, A. Meyhofer-Malik, O. Buchweitz, P. Moubayed, K. Diedrich, Fluorescence diagnosis of endometriosis using 5-aminolevulinic acid, Surg. Endosc., 2000, 14, 452–455.

    Article  CAS  PubMed  Google Scholar 

  41. C. J. Kelty, N. J. Brown, M. W. Reed, R. Ackroyd, The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci., 2002, 1, 158–168.

    Article  CAS  PubMed  Google Scholar 

  42. R. M. Szeimies, M. Landthaler, Photodynamic therapy and fluorescence diagnosis of skin cancers, Recent Results Cancer Res., 2002, 160, 240–245.

    Article  PubMed  Google Scholar 

  43. D. L. Stulberg, B. Crandell, R. S. Fawcett, Diagnosis and treatment of basal cell and squamous cell carcinomas, Am. Fam. Physician, 2004, 70, 1481–1488.

    PubMed  Google Scholar 

  44. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, Lancet Oncol., 2006, 7, 392–401.

    Article  CAS  PubMed  Google Scholar 

  45. A. Casas, A. Batlle, Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy, Curr. Med. Chem., 2006, 13, 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  46. N. Fotinos, M. A. Campo, F. Popowycz, R. Gurny, N. Lange, 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives, Photochem. Photobiol., 2006, 82, 994–1015.

    Article  CAS  PubMed  Google Scholar 

  47. P. Babilas, M. Landthaler, R. M. Szeimies, Photodynamic therapy in dermatology, Eur. J. Dermatol., 2006, 16, 340–348.

    CAS  PubMed  Google Scholar 

  48. M. S. Nestor, M. H. Gold, A. N. Kauvar, A. F. Taub, R. G. Geronemus, E. C. Ritvo, M. P. Goldman, D. J. Gilbert, D. F. Richey, T. S. Alster, R. R. Anderson, D. E. Bank, A. Carruthers, J. Carruthers, D. J. Goldberg, C. W. Hanke, N. J. Lowe, D. M. Pariser, D. S. Rigel, P. Robins, J. M. Spencer, B. D. Zelickson, The use of photodynamic therapy in dermatology: results of a consensus conference, J. Drugs Dermatol., 2006, 5, 140–154.

    PubMed  Google Scholar 

  49. P. Hillemanns, M. Untch, F. Prove, R. Baumgartner, M. Hillemanns, M. Korell, Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid, Obstet. Gynecol., 1999, 93, 71–74.

    CAS  PubMed  Google Scholar 

  50. M. K. Fehr, R. Hornung, V. A. Schwarz, R. Simeon, U. Haller, P. Wyss, Photodynamic therapy of vulvar intraepithelial neoplasia III using topically applied 5-aminolevulinic acid, Gynecol. Oncol., 2001, 80, 62–66.

    Article  CAS  PubMed  Google Scholar 

  51. F. Raspagliesi, R. Fontanelli, G. Rossi, A. Ditto, E. Solima, F. Hanozet, S. Kusamura, Photodynamic therapy using a methyl ester of 5-aminolevulinic acid in recurrent Paget’s disease of the vulva: a pilot study, Gynecol. Oncol., 2006, 103, 581–586.

    Article  CAS  PubMed  Google Scholar 

  52. M. Loning, H. Diddens, M. Friedrich, C. Altgassen, K. Diedrich, G. Huttmann, Fluorescence diagnosis and photodynamic therapy with 5-aminolevulinic acid induced protoporphyrin IX in gynecology: an overview, Zentralbl. Gynakol., 2006, 128, 311–317.

    Article  CAS  PubMed  Google Scholar 

  53. F. Sabban, P. Collinet, M. Cosson, S. Mordon, Fluorescence imaging technique: diagnostic and therapeutic interest in gynecology, J. Gynecol. Obstet. Biol. Reprod. (Paris), 2004, 33, 734–738.

    Article  CAS  Google Scholar 

  54. M. Loning, H. Diddens, W. Kupker, K. Diedrich, G. Huttmann, Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin IX, Cancer, 2004, 100, 1650–1656.

    Article  PubMed  Google Scholar 

  55. M. Kriegmair, D. Zaak, R. Knuechel, R. Baumgartner, A. Hofstetter, 5-Aminolevulinic acid-induced fluorescence endoscopy for the detection of lower urinary tract tumors, Urol. Int., 1999, 63, 27–31.

    Article  CAS  PubMed  Google Scholar 

  56. M. Kriegmair, D. Zaak, R. Knuechel, R. Baumgartner, A. Hofstetter, Photodynamic cystoscopy for detection of bladder tumors, Semin. Laparosc. Surg., 1999, 6, 100–103.

    CAS  PubMed  Google Scholar 

  57. K. Chatterton, E. Ray, T. S. O’Brien, Fluorescence diagnosis of bladder cancer, Br. J. Nurs., 2006, 15, 595–597.

    Article  CAS  PubMed  Google Scholar 

  58. E. Hungerhuber, H. Stepp, M. Kriegmair, C. Stief, A. Hofstetter, A. Hartmann, R. Knuechel, A. Karl, S. Tritschler, D. Zaak, Seven years’ experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder, Urology, 2007, 69, 260–264.

    Article  PubMed  Google Scholar 

  59. R. Ackroyd, N. J. Brown, M. F. Davis, T. J. Stephenson, S. L. Marcus, C. J. Stoddard, A. G. Johnson, M. W. Reed, Photodynamic therapy for dysplastic Barrett’s oesophagus: a prospective, double blind, randomised, placebo controlled trial, Gut, 2000, 47, 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. Hage, P. D. Siersema, D. H. van, E. W. Steyerberg, J. Haringsma, d. van V, T. E. Grool, R. L. van Veen, H. J. Sterenborg, E. J. Kuipers, 5-aminolevulinic acid photodynamic therapy versus argon plasma coagulation for ablation of Barrett’s oesophagus: a randomised trial, Gut, 2004, 53, 785–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. C. J. Kelty, R. Ackroyd, N. J. Brown, T. J. Stephenson, C. J. Stoddard, M. W. Reed, Endoscopic ablation of Barrett’s oesophagus: a randomized-controlled trial of photodynamic therapy vs. argon plasma coagulation, Aliment. Pharmacol. Ther., 2004, 20, 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  62. J. Smolka, A. Mateasik, B. Cunderlikova, L. Sanislo, P. Mlkvy, In vivo fluorescence diagnostics and photodynamic therapy of gastrointestinal superficial polyps with aminolevulinic acid. A clinical and spectroscopic study, Neoplasma, 2006, 53, 418–423.

    CAS  PubMed  Google Scholar 

  63. P. G. Calzavara-Pinton, M. Venturini, R. Sala, Photodynamic therapy: update 2006. Part 2: Clinical results, J. Eur. Acad. Dermatol. Venereol., 2007, 21, 439–451.

    Article  CAS  PubMed  Google Scholar 

  64. J. S. Dover, A. C. Bhatia, B. Stewart, K. A. Arndt, Topical 5-aminolevulinic acid combined with intense pulsed light in the treatment of photoaging, Arch. Dermatol., 2005, 141, 1247–1252.

    Article  PubMed  Google Scholar 

  65. K. Zakhary, D. A. Ellis, Applications of aminolevulinic Acid–based photodynamic therapy in cosmetic facial plastic practices, Facial Plast. Surg., 2005, 21, 110–116.

    Article  CAS  PubMed  Google Scholar 

  66. P. K. Nootheti, M. P. Goldman, Aminolevulinic acid-photodynamic therapy for photorejuvenation, Dermatol. Clin., 2007, 25, 35–45.

    Article  CAS  PubMed  Google Scholar 

  67. I. M. Stender, N. Bech-Thomsen, T. Poulsen, H. C. Wulf, Photodynamic therapy with topical delta-aminolevulinic acid delays UV photocarcinogenesis in hairless mice, Photochem. Photobiol., 1997, 66, 493–496.

    Article  CAS  PubMed  Google Scholar 

  68. S. Sharfaei, G. Viau, H. Lui, D. Bouffard, R. Bissonnette, Systemic photodynamic therapy with aminolaevulinic acid delays the appearance of ultraviolet-induced skin tumours in mice, Br. J. Dermatol., 2001, 144, 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  69. S. Sharfaei, P. Juzenas, J. Moan, R. Bissonnette, Weekly topical application of methyl aminolevulinate followed by light exposure delays the appearance of UV-induced skin tumours in mice, Arch. Dermatol. Res., 2002, 294, 237–242.

    Article  CAS  PubMed  Google Scholar 

  70. Y. Liu, G. Viau, R. Bissonnette, Multiple large-surface photodynamic therapy sessions with topical or systemic aminolevulinic acid and blue light in UV-exposed hairless mice, J. Cutan. Med. Surg., 2004, 8, 131–139.

    Article  PubMed  Google Scholar 

  71. C. Ledoux-Lebards Annales de l’Institut Pasteur, 1902, 16.

  72. H. von Tappeiner, A. Jesionek, Therapeutische Versuche mit fluoreszierenden Stoffen, Med. Wochenschau, 1903, 50, 2042–2044.

    Google Scholar 

  73. W. Straub, Uber chemische Vorgänge bei der Einwirkung von Licht auf fluoreszierende Substanzen (Eosin und Chinin) und die Bedeutung dieser Vorgänge für die Giftwirkung, Munch Med Wochenschr, 1904, 51, 1093–1096.

    Google Scholar 

  74. H. Kautsky, H. de Bruijn, Die Aufklärung der Photoluminescenztilgung fluorescierender Systeme durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung, Naturwissenschaften, 1931, 19, 1043.

    Article  CAS  Google Scholar 

  75. G. O. Schenck, Photosensitized reactions with molecular oxygen, Naturwissenschaften, 1948, 35, 28–29.

    Article  CAS  Google Scholar 

  76. C. S. Foote, S. Wexler, A probable intermediate in photosensitized autooxidations, J. Am. Chem. Soc., 1964, 86, 3880.

    Article  CAS  Google Scholar 

  77. C. S. Foote, Mechanisms of Photosensitized Oxidation, Science, 1968, 29, 963–970.

    Article  Google Scholar 

  78. T. P. Devasagayam, J. P. Kamat, Biological significance of singlet oxygen, Indian J. Exp. Biol., 2002, 40, 680–692.

    CAS  PubMed  Google Scholar 

  79. M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.

    Article  CAS  PubMed  Google Scholar 

  80. P. Juzenas, J. Moan, Singlet oxygen in photosensitization, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 29–50.

    Article  CAS  PubMed  Google Scholar 

  81. R. Schmidt, Photosensitized generation of singlet oxygen, Photochem. Photobiol., 2006, 82, 1161–1177.

    Article  CAS  PubMed  Google Scholar 

  82. W. M. Sharman, C. M. Allen, J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Methods Enzymol., 2000, 319, 376–400.

    Article  CAS  PubMed  Google Scholar 

  83. K. R. Weishaupt, C. J. Gomer, T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor, Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  84. S. K. Lee, I. J. Forbes, W. H. Betts, Oxygen dependency of photocytotoxicity with haematoporphyrin derivative, Photochem. Photobiol., 1984, 39, 631–634.

    Article  Google Scholar 

  85. J. B. Mitchell, S. McPherson, W. DeGraff, J. Gamson, A. Zabell, A. Russo, Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells, Cancer Res., 1985, 45, 2008–2011.

    CAS  PubMed  Google Scholar 

  86. J. Moan, S. Sommer, Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells, Cancer Res., 1985, 45, 1608–1610.

    CAS  PubMed  Google Scholar 

  87. B. W. Henderson, V. H. Fingar, Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor, Cancer Res., 1987, 47, 3110–3114.

    CAS  PubMed  Google Scholar 

  88. J. Moan, E. Wold, Detection of singlet oxygen production by ESR, Nature, 1979, 279, 451.

    Article  Google Scholar 

  89. J. Moan, S. Sommer, Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells, Cancer Res., 1985, 45, 1608–1610.

    CAS  PubMed  Google Scholar 

  90. J. Moan, On the diffusion length of singlet oxygen in cells and tissues, J. Photochem. Photobiol., B, 1990, 6, 343–344.

    Article  CAS  Google Scholar 

  91. J. Moan, K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  92. R. W. Boyle, D. Dolphin, Structure and biodistribution relationships of photodynamic sensitizers, Photochem. Photobiol., 1996, 64, 469–485.

    Article  CAS  PubMed  Google Scholar 

  93. N. Gruener, M. P. Lockwood, Photodynamic mutagenicity in mammalian cells, Biochem. Biophys. Res. Commun., 1979, 90, 460–465.

    Article  CAS  PubMed  Google Scholar 

  94. B. Gutter, W. T. Speck, H. S. Rosenkranz, The photodynamic modification of DNA by hematoporphyrin, Biochim. Biophys. Acta, 1977, 475, 307–314.

    Article  CAS  PubMed  Google Scholar 

  95. E. Kvam, T. Stokke, Sites of photodynamically induced DNA repair in human cells, Photochem. Photobiol., 1994, 59, 437–440.

    Article  CAS  PubMed  Google Scholar 

  96. J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Ruck, H. Schneckenburger, Intracellular localization of photosensitizers, Ciba Found. Symp., 1989, 146, 95–107.

    CAS  PubMed  Google Scholar 

  97. Q. Peng, G. W. Farrants, K. Madslien, J. C. Bommer, J. Moan, H. E. Danielsen, J. M. Nesland, Subcellular localization, redistribution and photobleaching of sulfonated aluminum phthalocyanines in a human melanoma cell line, Int. J. Cancer, 1991, 49, 290–295.

    Article  CAS  PubMed  Google Scholar 

  98. S. Sandberg, I. Romslo, G. Hovding, T. Bjorndal, Porphyrin-induced photodamage as related to the subcellular localization of the porphyrins, Acta Derm. Venereol. Suppl. (Stockholm), 1982, 100, 75–80.

    CAS  Google Scholar 

  99. J. Winkelman, Intracellular localization of “hematoporphyrin” in a transplanted tumor, J. Natl. Cancer Inst., 1961, 27, 1369–1377.

    CAS  PubMed  Google Scholar 

  100. S. Collaud, A. Juzeniene, J. Moan, N. Lange, On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation, Curr. Med. Chem. Anticancer Agents, 2004, 4, 301–316.

    Article  CAS  PubMed  Google Scholar 

  101. M. R. Hamblin, E. L. Newman, On the mechanism of the tumour-localising effect in photodynamic therapy, J. Photochem. Photobiol., B, 1994, 23, 3–8.

    Article  CAS  Google Scholar 

  102. G. Jori, Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy, J. Photochem. Photobiol., B, 1996, 36, 87–93.

    Article  CAS  Google Scholar 

  103. J. Moan, J. T. van den Akker, P. Juzenas, L. W. Ma, E. Angell-Petersen, Ø. B. Gadmar, V. Iani, On the basis for tumor selectivity in the 5-aminolevulinic acid-induced synthesis of protoporphyrin IX, J. Porphyrins Phthalocyanines, 2001, 5, 170–176.

    Article  CAS  Google Scholar 

  104. J. Moan, B. Cunderlikova, A. Juzeniene, P. Juzenas, L.-W. Ma and V. Iani, Tumour selectivity of Photodynamic Therapy, in Targeted Cancer Therapies. An Odyssey, ed. Ø. S. Bruland and T. Flægstad, Ravnetrykk, Tromsø, 2003, pp. 208–211.

    Google Scholar 

  105. R. Pottier, J. C. Kennedy, The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue, J. Photochem. Photobiol., B, 1990, 8, 1–16.

    Article  CAS  Google Scholar 

  106. L. E. Gerweck, K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer, Cancer Res., 1996, 56, 1194–1198.

    CAS  PubMed  Google Scholar 

  107. M. Korbelik, G. Krosl, P. L. Olive, D. J. Chaplin, Distribution of Photofrin between tumour cells and tumour associated macrophages, Br. J. Cancer, 1991, 64, 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. J. C. Maziere, P. Morliere, R. Santus, The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1991, 8, 351–360.

    Article  CAS  Google Scholar 

  109. P. Vaupel, F. Kallinowski, P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review, Cancer Res., 1989, 49, 6449–6465.

    CAS  PubMed  Google Scholar 

  110. R. K. Jain, Transport of molecules in the tumor interstitium: a review, Cancer Res., 1987, 47, 3039–3051.

    CAS  PubMed  Google Scholar 

  111. P. Subarsky, R. P. Hill, The hypoxic tumour microenvironment and metastatic progression, Clin. Exp. Metastasis, 2003, 20, 237–250.

    Article  CAS  PubMed  Google Scholar 

  112. M. W. Reed, A. P. Mullins, G. L. Anderson, F. N. Miller, T. J. Wieman, The effect of photodynamic therapy on tumor oxygenation, Surgery, 1989, 106, 94–99.

    CAS  PubMed  Google Scholar 

  113. B. J. Tromberg, A. Orenstein, S. Kimel, S. J. Barker, J. Hyatt, J. S. Nelson, M. W. Berns, In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy, Photochem. Photobiol., 1990, 52, 375–385.

    Article  CAS  PubMed  Google Scholar 

  114. V. H. Fingar, Vascular effects of photodynamic therapy, J. Clin. Laser Med. Surg., 1996, 14, 323–328.

    Article  CAS  PubMed  Google Scholar 

  115. T. M. Sitnik, J. A. Hampton, B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. T. M. Busch, Local physiological changes during photodynamic therapy, Lasers Surg. Med., 2006, 38, 494–499.

    Article  PubMed  Google Scholar 

  117. H. Fukuda, A. Casas, A. Batlle, Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy: a review of our experience, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 127–143.

    Article  CAS  PubMed  Google Scholar 

  118. M. Lahav, O. Epstein, N. Schoenfeld, M. Shaklai, A. Atsmon, Increased porphobilinogen deaminase activity in patients with malignant lymphoproliferative diseases. A helpful diagnostic test, J. Am Med. Assoc., 1987, 257, 39–42.

    Article  CAS  Google Scholar 

  119. M. Kondo, N. Hirota, T. Takaoka, M. Kajiwara, Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat, Cell Biol. Toxicol., 1993, 9, 95–105.

    Article  CAS  PubMed  Google Scholar 

  120. S. L. Gibson, D. J. Cupriks, J. J. Havens, M. L. Nguyen, R. Hilf, A regulatory role for porphobilinogen deaminase (PBGD) in delta-aminolaevulinic acid (delta-ALA)-induced photosensitization?, Br. J. Cancer, 1998, 77, 235–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. R. van Hillegersberg, J. W. Van den Berg, W. J. Kort, O. T. Terpstra, J. H. Wilson, Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats, Gastroenterology, 1992, 103, 647–651.

    Article  PubMed  Google Scholar 

  122. C. Pourzand, O. Reelfs, E. Kvam, R. M. Tyrrell, The iron regulatory protein can determine the effectiveness of 5-aminolevulinic acid in inducing protoporphyrin IX in human primary skin fibroblasts, J. Invest. Dermatol., 1999, 112, 419–425.

    Article  CAS  PubMed  Google Scholar 

  123. K. Berg, H. Anholt, O. Bech, J. Moan, The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells, Br. J. Cancer, 1996, 74, 688–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. O. Bech, D. Phillips, J. Moan, A. J. MacRobert, A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells, J. Photochem. Photobiol., B, 1997, 41, 136–144.

    Article  CAS  Google Scholar 

  125. S. C. Chang, A. J. MacRobert, J. B. Porter, S. G. Bown, The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study, J. Photochem. Photobiol., B, 1997, 38, 114–122.

    Article  CAS  Google Scholar 

  126. A. Curnow, B. W. McIlroy, M. J. Postle-Hacon, J. B. Porter, A. J. MacRobert, S. G. Bown, Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents, Br. J. Cancer, 1998, 78, 1278–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. W. Xie, P. McCahon, K. Jakobsen, C. Parish, Evaluation of the ability of digital infrared imaging to detect vascular changes in experimental animal tumours, Int. J. Cancer, 2004, 108, 790–794.

    Article  CAS  PubMed  Google Scholar 

  128. C. Song, V. Appleyard, K. Murray, T. Frank, W. Sibbett, A. Cuschieri, A. Thompson, Thermographic assessment of tumor growth in mouse xenografts, Int. J. Cancer, 2007, 121, 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  129. W. Dietel, K. Bolsen, E. Dickson, C. Fritsch, R. Pottier, R. Wendenburg, Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells, J. Photochem. Photobiol., B, 1996, 33, 225–231.

    Article  CAS  Google Scholar 

  130. P. Juzenas, R. Sorensen, V. Iani, J. Moan, Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature, Photochem. Photobiol., 1999, 69, 478–481.

    Article  CAS  PubMed  Google Scholar 

  131. J. Moan, K. Berg, O. B. Gadmar, V. Iani, L. Ma, P. Juzenas, The temperature dependence of protoporphyrin IX production in cells and tissues, Photochem. Photobiol., 1999, 70, 669–673.

    Article  CAS  PubMed  Google Scholar 

  132. J. A. Bouwstra, P. L. Honeywell-Nguyen, Skin structure and mode of action of vesicles, Adv. Drug Delivery Rev., 2002, 54(Suppl. 1), S41–S55.

    Article  CAS  Google Scholar 

  133. C. Fuchs, R. Riesenberg, J. Siegert, R. Baumgartner, pH-dependent formation of 5-aminolaevulinic acid-induced protoporphyrin IX in fibrosarcoma cells, J. Photochem. Photobiol., B, 1997, 40, 49–54.

    Article  CAS  Google Scholar 

  134. L. Wyld, M. W. Reed, N. J. Brown, The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro, Br. J. Cancer, 1998, 77, 1621–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. M. T. Wyss-Desserich, C. H. Sun, P. Wyss, C. S. Kurlawalla, U. Haller, M. W. Berns, Y. Tadir, Accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in normal and neoplastic human endometrial epithelial cells, Biochem. Biophys. Res. Commun., 1996, 224, 819–824.

    Article  CAS  PubMed  Google Scholar 

  136. B. Ortel, N. Chen, J. Brissette, G. P. Dotto, E. Maytin, T. Hasan, Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes, Br. J. Cancer, 1998, 77, 1744–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. B. Ortel, D. Sharlin, D. O’Donnell, A. K. Sinha, E. V. Maytin, T. Hasan, Differentiation enhances aminolevulinic acid-dependent photodynamic treatment of LNCaP prostate cancer cells, Br. J. Cancer, 2002, 87, 1321–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. S. D. Ickowicz, Y. Gozlan, L. Greenbaum, T. Babushkina, D. J. Katcoff, Z. Malik, Differentiation-dependent photodynamic therapy regulated by porphobilinogen deaminase in B16 melanoma, Br. J. Cancer, 2004, 90, 1833–1841.

    Article  CAS  Google Scholar 

  139. S. L. Gibson, M. L. Nguyen, J. J. Havens, A. Barbarin, R. Hilf, Relationship of delta-aminolevulinic acid-induced protoporphyrin IX levels to mitochondrial content in neoplastic cells in vitro, Biochem. Biophys. Res. Commun., 1999, 265, 315–321.

    Article  CAS  PubMed  Google Scholar 

  140. L. Brancaleon, H. Moseley, Laser and non-laser light sources for photodynamic therapy, Lasers Med. Sci., 2002, 17, 173–186.

    Article  CAS  PubMed  Google Scholar 

  141. T. S. Mang, Lasers and light sources for PDT: past, present and future, Photodiagn. Photodyn. Ther., 2004, 1, 43–48.

    Article  Google Scholar 

  142. J. Moan, The photochemical yield of singlet oxygen from porphyrins in different states of aggregation, Photochem. Photobiol., 1984, 39, 445–449.

    Article  CAS  Google Scholar 

  143. W. M. Star, In vivo action spectra, absorption and fluorescence excitation spectra of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 1995, 28, 101–102.

    Article  CAS  Google Scholar 

  144. J. Moan, S. Sommer, Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation, Photochem. Photobiol., 1984, 40, 631–634.

    Article  CAS  PubMed  Google Scholar 

  145. J. Moan, K. Berg, J. C. Bommer, A. Western, Action spectra of phthalocyanines with respect to photosensitization of cells, Photochem. Photobiol., 1992, 56, 171–175.

    Article  CAS  PubMed  Google Scholar 

  146. J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulfonic acid in vivo, J. Photochem. Photobiol., B, 1994, 24, 195–199.

    Article  CAS  Google Scholar 

  147. C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing, Photochem. Photobiol., 1984, 39, 365–368.

    Article  CAS  PubMed  Google Scholar 

  148. K. P. Nielsen, A. Juzeniene, P. Juzenas, K. Stamnes, J. J. Stamnes, J. Moan, Choice of optimal wavelength for PDT: The significance of oxygen depletion, Photochem. Photobiol., 2005.

    Google Scholar 

  149. L. O. Svaasand, Photodynamic and photohyperthermic response of malignant tumors, Med. Phys., 1985, 12, 455–461.

    Article  CAS  PubMed  Google Scholar 

  150. N. Michailov, M. Peeva, I. Angelov, D. Wohrle, S. Muller, G. Jori, F. Ricchelli, M. Shopova, Fluence rate effects on photodynamic therapy of B16 pigmented melanoma, J. Photochem. Photobiol., B, 1997, 37, 154–157.

    Article  CAS  Google Scholar 

  151. T. M. Busch, E. P. Wileyto, M. J. Emanuele, F. Del Piero, L. Marconato, E. Glatstein, C. J. Koch, Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen, Cancer Res., 2002, 62, 7273–7279.

    CAS  PubMed  Google Scholar 

  152. P. Babilas, V. Schacht, G. Liebsch, O. S. Wolfbeis, M. Landthaler, R. M. Szeimies, C. Abels, Effects of light fractionation and different fluence rates on photodynamic therapy with 5-aminolaevulinic acid in vivo, Br. J. Cancer, 2003, 88, 1462–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. B. W. Henderson, T. M. Busch, L. A. Vaughan, N. P. Frawley, D. Babich, T. A. Sosa, J. D. Zollo, A. S. Dee, M. T. Cooper, D. A. Bellnier, W. R. Greco, A. R. Oseroff, Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate, Cancer Res., 2000, 60, 525–529.

    CAS  PubMed  Google Scholar 

  154. B. W. Henderson, T. M. Busch, J. W. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  PubMed  Google Scholar 

  155. L. McCaughan, Lasers in photodynamic therapy, Nurs. Clin. North Am., 1990, 25, 725–738.

    CAS  PubMed  Google Scholar 

  156. H. J. Sterenborg, M. J. van Gemert, Photodynamic therapy with pulsed light sources: a theoretical analysis, Phys. Med. Biol., 1996, 41, 835–849.

    Article  CAS  PubMed  Google Scholar 

  157. A. Ferrario, N. Rucker, S. W. Ryter, D. R. Doiron, C. J. Gomer, Direct comparison of in vitro and in vivo Photofrin-II mediated photosensitization using a pulsed KTP pumped dye laser and a continuous wave argon ion pumped dye laser, Lasers Surg. Med., 1991, 11, 404–410.

    Article  CAS  PubMed  Google Scholar 

  158. F. A. Al Watban, X. Y. Zhang, The comparison of effects between pulsed and CW lasers on wound healing, J. Clin. Laser Med. Surg., 2004, 22, 15–18.

    Article  Google Scholar 

  159. S. Kawauchi, Y. Morimoto, S. Sato, T. Arai, K. Seguchi, H. Asanuma, M. Kikuchi, Differences between cytotoxicity in photodynamic therapy using a pulsed laser and a continuous wave laser: study of oxygen consumption and photobleaching, Lasers Med. Sci., 2004, 18, 179–183.

    Article  CAS  PubMed  Google Scholar 

  160. J. Strasswimmer, D. J. Grande, Do pulsed lasers produce an effective photodynamic therapy response?, Lasers Surg. Med., 2006, 38, 22–25.

    Article  PubMed  Google Scholar 

  161. M. Panjehpour, B. F. Overholt, J. M. Haydek, Light sources and delivery devices for photodynamic therapy in the gastrointestinal tract, Gastrointest. Endosc. Clin. N. Am., 2000, 10, 513–532.

    Article  CAS  PubMed  Google Scholar 

  162. S. B. Brown, The role of light in the treatment of non-melanoma skin cancer using methyl aminolevulinate, J. Dermatol. Treat., 2003, 14(Suppl. 3), 11–14.

    Article  CAS  Google Scholar 

  163. I. Hamzavi, H. Lui, Using light in dermatology: an update on lasers, ultraviolet phototherapy, and photodynamic therapy, Dermatol. Clin., 2005, 23, 199–207.

    Article  PubMed  Google Scholar 

  164. C. Clark, R. S. Dawe, H. Moseley, J. Ferguson, S. H. Ibbotson, The characteristics of erythema induced by topical 5-aminolaevulinic acid photodynamic therapy, Photodermatol. Photoimmunol. Photomed., 2004, 20, 105–107.

    Article  CAS  PubMed  Google Scholar 

  165. A. M. Soler, E. Angell-Petersen, T. Warloe, J. Tausjo, H. B. Steen, J. Moan, K. E. Giercksky, Photodynamic therapy of superficial basal cell carcinoma with 5-aminolevulinic acid with dimethylsulfoxide and ethylendiaminetetraacetic acid: a comparison of two light sources, Photochem. Photobiol., 2000, 71, 724–729.

    Article  CAS  PubMed  Google Scholar 

  166. R. Bonnett, G. Martinez, Photobleaching of sensitisers used in photodynamic therapy, Tetrahedron, 2001, 57, 9513–9547.

    Article  CAS  Google Scholar 

  167. J. Moan, Effect of bleaching of porphyrin sensitizers during photodynamic therapy, Cancer Lett., 1986, 33, 45–53.

    Article  CAS  PubMed  Google Scholar 

  168. J. Rotomskiene, R. Kapociute, R. Rotomskis, G. Jonusauskas, T. Szito, A. Nizhnik, Light-induced transformations of hematoporphyrin diacetate and hematoporphyrin, J. Photochem. Photobiol., B, 1988, 2, 373–379.

    Article  CAS  Google Scholar 

  169. G. Streckyte, R. Rotomskis, Phototransformations of porphyrins in aqueous and micellar media, J. Photochem. Photobiol., B, 1993, 18, 259–263.

    Article  CAS  Google Scholar 

  170. R. Rotomskis, S. Bagdonas, G. Streckyte, Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumour therapy, J. Photochem. Photobiol., B, 1996, 33, 61–67.

    Article  CAS  Google Scholar 

  171. S. Bagdonas, L. W. Ma, V. Iani, R. Rotomskis, P. Juzenas, J. Moan, Phototransformations of 5-aminolevulinic acid-induced protoporphyrin IX in vitro: a spectroscopic study, Photochem. Photobiol., 2000, 72, 186–192.

    Article  CAS  PubMed  Google Scholar 

  172. M. Krieg, D. G. Whitten, Self-sensitized photo-oxidation of protoporphyrin IX and related porphyrins in erythrocyte ghosts and microemulsions: A novel photo-oxidation pathway involving singlet oxygen, J. Photochem., 1984, 25, 235–252.

    Article  CAS  Google Scholar 

  173. J. Moan, P. Juzenas and S. Bagdonas, Degradation and transformation of photosensitisers during light exposure, in Recent Research Developments in Photochemistry and Photobiology, ed. S. G. Pandalai, Transworld Research Network, Trivandrum, 2000, pp. 121–132.

    Google Scholar 

  174. R. Rotomskis, S. Bagdonas, G. Streckyte, R. Wendenburg, W. Dietel, J. Didziapetriene, A. Ibelhauptaite, L. Staciokiene, Phototransformation of Sensitisers: 3. Implications for Clinical Dosimetry, Lasers Med. Sci., 1998, 13, 271–278.

    Article  CAS  PubMed  Google Scholar 

  175. I. Georgakoudi, M. G. Nichols, T. H. Foster, The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry, Photochem. Photobiol., 1997, 65, 135–144.

    Article  CAS  PubMed  Google Scholar 

  176. I. Georgakoudi, T. H. Foster, Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry, Photochem. Photobiol., 1998, 67, 612–625.

    CAS  PubMed  Google Scholar 

  177. T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Somer, J. Moan, Photobleaching of porphyrins used in photodynamic therapy and implications for therapy, Photochem. Photobiol., 1987, 45, 501–506.

    Article  CAS  PubMed  Google Scholar 

  178. L. I. Grossweiner, Optical dosimetry in photodynamic therapy, Lasers Surg. Med., 1986, 6, 462–466.

    Article  CAS  PubMed  Google Scholar 

  179. A. J. Jongen, H. J. Sterenborg, Mathematical description of photobleaching in vivo describing the influence of tissue optics on measured fluorescence signals, Phys. Med. Biol., 1997, 42, 1701–1716.

    Article  CAS  PubMed  Google Scholar 

  180. C. J. Gomer, M. Luna, A. Ferrario, S. Wong, A. M. Fisher, N. Rucker, Cellular targets and molecular responses associated with photodynamic therapy, J. Clin. Laser Med. Surg., 1996, 14, 315–321.

    Article  CAS  PubMed  Google Scholar 

  181. J. M. Collins, G. E. Cohn, L. J. Lis, Changes in the plasma membrane of yeast observed by spin label electron spin resonance and caused by photodynamic attack, Chem. Phys. Lipids, 1982, 30, 297–308.

    Article  CAS  PubMed  Google Scholar 

  182. A. F. De Goeij, P. H. Ververgaert, J. V. Steveninck, Photodynamic effects of protoporphyrin on the architecture of erythrocyte membranes in protoporphyria and in normal red blood cells, Clin. Chim. Acta, 1975, 62, 287–292.

    Article  PubMed  Google Scholar 

  183. M. Tatsuta, R. Yamamoto, H. Yamamura, H. Iishi, S. Noguchi, M. Ichii, S. Okuda, Photodynamic effects of exposure to hematoporphyrin derivatives and dye-laser radiation on human gastric adenocarcinoma cells, J. Natl. Cancer Inst., 1984, 73, 59–67.

    CAS  PubMed  Google Scholar 

  184. T. Christensen, J. Moan, L. Smedshammer, A. Western, C. Rimington, Influence of hematoporphyrin derivative (Hpd) and light on the attachment of cells to the substratum, Photobiochem. Photobiophys., 1985, 10, 53–59.

    CAS  Google Scholar 

  185. S. C. Denstman, L. E. Dillehay, J. R. Williams, Enhanced susceptibility to HPD-sensitized phototoxicity and correlated resistance to trypsin detachment in SV40 transformed IMR-90 cells, Photochem. Photobiol., 1986, 43, 145–147.

    Article  CAS  PubMed  Google Scholar 

  186. M. T. Foultier, V. Vonarx-Coinsmann, S. Cordel, A. Combre, T. Patrice, Modulation of colonic cancer cell adhesiveness by haematoporphyrin derivative photodynamic therapy, J. Photochem. Photobiol., B, 1994, 23, 9–17.

    Article  CAS  Google Scholar 

  187. A. Uzdensky, E. Kolpakova, A. Juzeniene, P. Juzenas, J. Moan, The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells, Biochim. Biophys. Acta, 2005, 1722, 43–50.

    Article  CAS  PubMed  Google Scholar 

  188. A. B. Uzdensky, A. Juzeniene, E. Kolpakova, G. O. Hjortland, P. Juzenas, J. Moan, Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum, Biochem. Biophys. Res. Commun., 2004, 322, 452–457.

    Article  CAS  PubMed  Google Scholar 

  189. K. Berg, J. Moan, J. C. Bommer, J. W. Winkelman, Cellular inhibition of microtubule assembly by photoactivated sulfonated meso-tetraphenylporphines, Int. J. Radiat. Biol., 1990, 58, 475–487.

    Article  CAS  PubMed  Google Scholar 

  190. K. Berg, J. Moan, Mitotic inhibition by phenylporphines and tetrasulfonated aluminium phthalocyanine in combination with light, Photochem. Photobiol., 1992, 56, 333–339.

    Article  CAS  PubMed  Google Scholar 

  191. J. F. Evensen, J. Moan, Photodynamic action and chromosomal damage: a comparison of haematoporphyrin derivative (HpD) and light with X-irradiation, Br. J. Cancer, 1982, 45, 456–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. N. L. Oleinick, R. L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  193. P. Agostinis, E. Buytaert, H. Breyssens, N. Hendrickx, Regulatory pathways in photodynamic therapy induced apoptosis, Photochem. Photobiol. Sci., 2004, 3, 721–729.

    Article  CAS  PubMed  Google Scholar 

  194. G. Canti, A. De Simone, M. Korbelik, Photodynamic therapy and the immune system in experimental oncology, Photochem. Photobiol. Sci., 2002, 1, 79–80.

    Article  CAS  PubMed  Google Scholar 

  195. B. Krammer, Vascular effects of photodynamic therapy, Anticancer Res., 2001, 21, 4271–4277.

    CAS  PubMed  Google Scholar 

  196. B. Chen, B. W. Pogue, P. J. Hoopes, T. Hasan, Vascular and cellular targeting for photodynamic therapy, Crit. Rev. Eukaryot. Gene Expr., 2006, 16, 279–305.

    Article  PubMed  Google Scholar 

  197. D. Kessel, M. G. Vicente, J. J. Reiners, Jr., Initiation of apoptosis and autophagy by photodynamic therapy, Lasers Surg. Med., 2006, 38, 482–488.

    Article  PubMed  PubMed Central  Google Scholar 

  198. D. Kessel, J. J. Reiners, Jr., Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14-1, Cancer Lett., 2007, 249, 294–299.

    Article  CAS  PubMed  Google Scholar 

  199. R. D. Almeida, B. J. Manadas, A. P. Carvalho, C. B. Duarte, Intracellular signaling mechanisms in photodynamic therapy, Biochim. Biophys. Acta, 2004, 1704, 59–86.

    CAS  PubMed  Google Scholar 

  200. A. C. Moor, Signaling pathways in cell death and survival after photodynamic therapy, J. Photochem. Photobiol., B, 2000, 57, 1–13.

    Article  CAS  Google Scholar 

  201. D. Kessel, Y. Luo, Photodynamic therapy: a mitochondrial inducer of apoptosis, Cell Death Differ., 1999, 6, 28–35.

    Article  CAS  PubMed  Google Scholar 

  202. K. Berg, P. K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, O. Fodstad, S. Kjolsrud, H. Anholt, G. H. Rodal, S. K. Rodal, A. Hogset, Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183.

    CAS  PubMed  Google Scholar 

  203. K. Berg, A. Høgset, L. Prasmickaite, A. Weyergang, A. Bonsted, A. Dietze, P.-J. Lou, S. Brown, O.-J. Norun, H. M. These, P. K. Møllergård, P. K. Selbo, Photochemical internalization (PCI): A novel technology for activation of endocytosed therapeutic agents, Med. Laser Appl., 2006, 21, 239–250.

    Article  Google Scholar 

  204. K. Berg, J. Moan, Lysosomes as photochemical targets, Int. J. Cancer, 1994, 59, 814–822.

    Article  CAS  PubMed  Google Scholar 

  205. J. Moan, V. Iani, L.-W. Ma, Q. Peng, Photodegradation of sensitizers in mouse skin during PCT, Proc. SPIE-Int. Soc. Opt. Eng., 1996, 2625, 187–193.

    CAS  Google Scholar 

  206. G. Canti, L. Ricci, V. Cantone, P. Franco, O. Marelli, A. Andreoni, R. Cubeddu, A. Nicolin, Hematoporphyrin derivative photoradiation therapy in murine solid tumors, Cancer Lett., 1983, 21, 233–237.

    Article  CAS  PubMed  Google Scholar 

  207. A. P. Castano, P. Mroz, M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. D. W. Hunt, A. H. Chan, Influence of photodynamic therapy on immunological aspects of disease - an update, Expert Opin. Invest. Drugs, 2000, 9, 807–817.

    Article  CAS  Google Scholar 

  209. M. Korbelik, Induction of tumor immunity by photodynamic therapy, J. Clin. Laser Med. Surg., 1996, 14, 329–334.

    Article  CAS  PubMed  Google Scholar 

  210. Z. Vancikova, Principles of the photodynamic therapy and its impact on the immune system, Sb. Lek., 1998, 99, 1–11.

    CAS  PubMed  Google Scholar 

  211. M. C. Luna, C. J. Gomer, Isolation and initial characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy, Cancer Res., 1991, 51, 4243–4249.

    CAS  PubMed  Google Scholar 

  212. G. Singh, B. C. Wilson, S. M. Sharkey, G. P. Browman, P. Deschamps, Resistance to photodynamic therapy in radiation induced fibrosarcoma-1 and Chinese hamster ovary-multi-drug resistant. Cells in vitro, Photochem. Photobiol., 1991, 54, 307–312.

    Article  CAS  PubMed  Google Scholar 

  213. C. M. West, J. V. Moore, Mechanisms behind the resistance of spheroids to photodynamic treatment: a flow cytometry study, Photochem. Photobiol., 1992, 55, 425–430.

    Article  CAS  PubMed  Google Scholar 

  214. L. Varriale, E. Coppola, M. Quarto, B. M. Veneziani, G. Palumbo, Molecular aspects of photodynamic therapy: low energy pre-sensitization of hypericin-loaded human endometrial carcinoma cells enhances photo-tolerance, alters gene expression and affects the cell cycle, FEBS Lett., 2002, 512, 287–290.

    Article  CAS  PubMed  Google Scholar 

  215. H. P. Wang, J. G. Hanlon, A. J. Rainbow, M. Espiritu, G. Singh, Up-regulation of Hsp27 plays a role in the resistance of human colon carcinoma HT29 cells to photooxidative stress, Photochem. Photobiol., 2002, 76, 98–104.

    Article  CAS  PubMed  Google Scholar 

  216. T. Christensen and J. Moan, Photodynamic Effect of Hematoporphyrin (HP) On Cells Cultivated in Vitro, in Lasers in Photomedicine and Photobiology, ed. R. Pratesi and C. A. Sacchi, Springer-Verlag, Berlin Heidelberg, New York, 1980, pp 87–91.

    Chapter  Google Scholar 

  217. J. Moan, S. E. Rognan, J. F. Evensen, Z. Malik, Cell photosensitization by porphyrins, Photobiochem. Photobiophys., 1987, 46, 385–395.

    Google Scholar 

  218. J. Dahle, O. Kaalhus, J. Moan, H. B. Steen, Cooperative effects of photodynamic treatment of cells in microcolonies, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 1773–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. J. Dahle, H. B. Steen, J. Moan, The mode of cell death induced by photodynamic treatment depends on cell density, Photochem. Photobiol., 1999, 70, 363–367.

    Article  CAS  PubMed  Google Scholar 

  220. J. Dahle, S. Bagdonas, O. Kaalhus, G. Olsen, H. B. Steen, J. Moan, The bystander effect in photodynamic inactivation of cells, Biochim. Biophys. Acta, 2000, 1475, 273–280.

    Article  CAS  PubMed  Google Scholar 

  221. J. Dahle, S. O. Mikalsen, E. Rivedal, H. B. Steen, Gap junctional intercellular communication is not a major mediator in the bystander effect in photodynamic treatment of MDCK II cells, Radiat. Res., 2000, 154, 331–341.

    Article  CAS  PubMed  Google Scholar 

  222. J. Dahle, E. Angell-Petersen, H. B. Steen, J. Moan, Bystander effects in cell death induced by photodynamic treatment UVA radiation and inhibitors of ATP synthesis, Photochem. Photobiol., 2001, 73, 378–387.

    Article  CAS  PubMed  Google Scholar 

  223. R. Ideta, F. Tasaka, W. D. Jang, N. Nishiyama, G. D. Zhang, A. Harada, Y. Yanagi, Y. Tamaki, T. Aida, K. Kataoka, Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer, Nano Lett., 2005, 5, 2426–2431.

    Article  CAS  PubMed  Google Scholar 

  224. W. Chen, J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment, J. Nanosci. Nanotechnol., 2006, 6, 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  225. Y. E. Koo, W. Fan, H. Hah, H. Xu, D. Orringer, B. Ross, A. Rehemtulla, M. A. Philbert, R. Kopelman, Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy, Appl. Opt., 2007, 46, 1924–1930.

    Article  CAS  PubMed  Google Scholar 

  226. A. C. Samia, X. Chen, C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 2003, 125, 15736–15737.

    Article  CAS  PubMed  Google Scholar 

  227. A. C. Samia, S. Dayal, C. Burda, Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy, Photochem. Photobiol., 2006, 82, 617–625.

    Article  CAS  PubMed  Google Scholar 

  228. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, P. N. Prasad, Two-photon photodynamic therapy, J. Clin. Laser Med. Surg., 1997, 15, 201–204.

    Article  CAS  PubMed  Google Scholar 

  229. W. G. Fisher, W. P. Partridge, Jr., C. Dees, E. A. Wachter, Simultaneous two-photon activation of type-I photodynamic therapy agents, Photochem. Photobiol., 1997, 66, 141–155.

    Article  CAS  PubMed  Google Scholar 

  230. S. Gupta, A. K. Mishra, K. Muralidhar, V. Jain, Improved targeting of photosensitizers by intratumoral administration of immunoconjugates, Technol. Cancer Res. Treat., 2004, 3, 295–301.

    Article  CAS  PubMed  Google Scholar 

  231. M. Y. Nahabedian, R. A. Cohen, M. F. Contino, T. M. Terem, W. H. Wright, M. W. Berns, A. G. Wile, Combination cytotoxic chemotherapy with cisplatin or doxorubicin and photodynamic therapy in murine tumors, J. Natl. Cancer Inst., 1988, 80, 739–743.

    Article  CAS  PubMed  Google Scholar 

  232. M. L. Jin, B. Q. Yang, W. Zhang, P. Ren, Combined treatment with photodynamic therapy and chemotherapy for advanced cardiac cancers, J. Photochem. Photobiol., B, 1992, 12, 101–106.

    Article  CAS  Google Scholar 

  233. C. M. Peterson, J. M. Lu, Y. Sun, C. A. Peterson, J. G. Shiah, R. C. Straight, J. Kopecek, Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice, Cancer Res., 1996, 56, 3980–3985.

    CAS  PubMed  Google Scholar 

  234. G. Canti, A. Nicolin, R. Cubeddu, P. Taroni, G. Bandieramonte, G. Valentini, Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors, Cancer Lett., 1998, 125, 39–44.

    Article  CAS  PubMed  Google Scholar 

  235. J. G. Shiah, Y. Sun, P. Kopeckova, C. M. Peterson, R. C. Straight, J. Kopecek, Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e(6)-OV-TL 16 antibody immunoconjugates, J. Controlled Release, 2001, 74, 249–253.

    Article  CAS  Google Scholar 

  236. H. Kolarova, R. Bajgar, K. Tomankova, E. Krestyn, L. Dolezal, J. Halek, In vitro study of reactive oxygen species production during photodynamic therapy in ultrasound-pretreated cancer cells, Physiol Res., 2007.

    Google Scholar 

  237. L. Ma, J. Moan, Q. Peng, V. Iani, Production of protoporphyrin IX induced by 5-aminolevulinic acid in transplanted human colon adenocarcinoma of nude mice can be increased by ultrasound, Int. J. Cancer, 1998, 78, 464–469.

    Article  CAS  PubMed  Google Scholar 

  238. F. Calzavara, L. Tomio, L. Corti, P. L. Zorat, I. Barone, A. Peracchia, L. Norberto, R. F. D’Arcais, F. Berti, Oesophageal cancer treated by photodynamic therapy alone or followed by radiation therapy, J. Photochem. Photobiol., B, 1990, 6, 167–174.

    Article  CAS  Google Scholar 

  239. K. Benstead, J. V. Moore, The effect of combined modality treatment with ionising radiation and TPPS-mediated photodynamic therapy on murine tail skin, Br. J. Cancer, 1990, 62, 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. R. Allman, P. Cowburn, M. Mason, Effect of photodynamic therapy in combination with ionizing radiation on human squamous cell carcinoma cell lines of the head and neck, Br. J. Cancer, 2000, 83, 655–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Z. Luksiene, A. Kalvelyte, R. Supino, On the combination of photodynamic therapy with ionizing radiation, J. Photochem. Photobiol., B, 1999, 52, 35–42.

    Article  CAS  Google Scholar 

  242. L. Ma, V. Iani, J. Moan, Combination therapy: photochemotherapy; electric current; and ionizing radiation. Different combinations studied in a WiDr human colon adenocarcinoma cell line, J. Photochem. Photobiol., B, 1993, 21, 149–154.

    Article  CAS  Google Scholar 

  243. S. M. Waldow, B. W. Henderson, T. J. Dougherty, Enhanced tumor control following sequential treatments of photodynamic therapy (PDT) and localized microwave hyperthermia in vivo, Lasers Surg. Med., 1984, 4, 79–85.

    Article  CAS  PubMed  Google Scholar 

  244. B. W. Henderson, S. M. Waldow, W. R. Potter, T. J. Dougherty, Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo, Cancer Res., 1985, 45, 6071–6077.

    CAS  PubMed  Google Scholar 

  245. P. C. Levendag, H. P. Marijnissen, R. de, V. J. A. Versteeg, G. C. van Rhoon, W. M. Star, Interaction of interstitial photodynamic therapy and interstitial hyperthermia in a rat rhabdomyosarcoma - a pilot study, Int. J. Radiat. Oncol., Biol., Phys., 1988, 14, 139–145.

    Article  CAS  Google Scholar 

  246. T. Christensen, L. Smedshammer, A. Wahl, J. Moan, Photodynamic effects and hyperthermia in vitro, Adv. Exp. Med. Biol., 1985, 193, 69–78.

    Article  CAS  PubMed  Google Scholar 

  247. J. S. Friedberg, R. Mick, J. Stevenson, J. Metz, T. Zhu, J. Buyske, D. H. Sterman, H. I. Pass, E. Glatstein, S. M. Hahn, A phase I study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma, Ann. Thorac. Surg., 2003, 75, 952–959.

    Article  PubMed  Google Scholar 

  248. J. S. Friedberg, R. Mick, J. P. Stevenson, T. Zhu, T. M. Busch, D. Shin, D. Smith, M. Culligan, A. Dimofte, E. Glatstein, S. M. Hahn, Phase II trial of pleural photodynamic therapy and surgery for patients with non-small-cell lung cancer with pleural spread, J. Clin. Oncol., 2004, 22, 2192–2201.

    Article  CAS  PubMed  Google Scholar 

  249. D. I. Kuijpers, N. W. Smeets, G. A. Krekels, M. R. Thissen, Photodynamic therapy as adjuvant treatment of extensive basal cell carcinoma treated with Mohs micrographic surgery, Dermatol. Surg., 2004, 30, 794–798.

    PubMed  Google Scholar 

  250. A. Nanashima, H. Yamaguchi, S. Shibasaki, N. Ide, T. Sawai, T. Tsuji, S. Hidaka, Y. Sumida, T. Nakagoe, T. Nagayasu, Adjuvant photodynamic therapy for bile duct carcinoma after surgery: a preliminary study, J. Gastroenterol., 2004, 39, 1095–1101.

    Article  PubMed  Google Scholar 

  251. H. B. Ris, Photodynamic therapy as an adjunct to surgery for malignant pleural mesothelioma, Lung Cancer, 2005, 49(Suppl. 1), S65–S68.

    Article  PubMed  Google Scholar 

  252. J. C. Bremner, G. E. Adams, J. K. Pearson, J. M. Sansom, I. J. Stratford, J. Bedwell, S. G. Bown, A. J. MacRobert, D. Phillips, Increasing the effect of photodynamic therapy on the RIF-1 murine sarcoma, using the bioreductive drugs RSU1069 and RB6145, Br. J. Cancer, 1992, 66, 1070–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. J. C. Bremner, J. K. Bradley, G. E. Adams, M. A. Naylor, J. M. Sansom, I. J. Stratford, Comparing the anti-tumor effect of several bioreductive drugs when used in combination with photodynamic therapy (PDT), Int. J. Radiat. Oncol., Biol., Phys., 1994, 29, 329–332.

    Article  CAS  Google Scholar 

  254. L. W. Ma, K. Berg, H. E. Danielsen, O. Kaalhus, V. Iani, J. Moan, Enhanced antitumour effect of photodynamic therapy by microtubule inhibitors, Cancer Lett., 1996, 109, 129–139.

    Article  CAS  PubMed  Google Scholar 

  255. J. S. Nelson, S. Kimel, L. Brown, M. W. Berns, Glucose administration combined with photodynamic therapy of cancer improves therapeutic efficacy, Lasers Surg. Med., 1992, 12, 153–158.

    Article  CAS  PubMed  Google Scholar 

  256. M. Capella, A. M. Coelho, S. Menezes, Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells, Photochem. Photobiol., 1996, 64, 205–210.

    Article  CAS  PubMed  Google Scholar 

  257. B. Piot, N. Rousset, P. Lenz, S. Eleouet, J. Carre, V. Vonarx, L. Bourre, T. Patrice, Enhancement of delta aminolevulinic acid-photodynamic therapy in vivo by decreasing tumor pH with glucose and amiloride, Laryngoscope, 2001, 111, 2205–2213.

    Article  CAS  PubMed  Google Scholar 

  258. J. Moan, L. W. Ma, E. Bjorklund, The effect of glucose and temperature on the in vivo efficiency of photochemotherapy with meso-tetra-hydroxyphenyl-chlorin, J. Photochem. Photobiol., B, 1999, 50, 94–98.

    Article  CAS  Google Scholar 

  259. P. K. Kaiser, Verteporfin photodynamic therapy and anti-angiogenic drugs: potential for combination therapy in exudative age-related macular degeneration, Curr. Med Res. Opin., 2007, 23, 477–487.

    Article  CAS  PubMed  Google Scholar 

  260. G. Canti, D. Lattuada, S. Morelli, A. Nicolin, R. Cubeddu, P. Taroni, G. Valentini, Efficacy of photodynamic therapy against doxorubicin-resistant murine tumors, Cancer Lett., 1995, 93, 255–259.

    Article  CAS  PubMed  Google Scholar 

  261. K. Kusuzaki, G. Minami, H. Takeshita, H. Murata, S. Hashiguchi, T. Nozaki, T. Ashihara, Y. Hirasawa, Photodynamic inactivation with acridine orange on a multidrug-resistant mouse osteosarcoma cell line, Jpn. J. Cancer Res., 2000, 91, 439–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. W. Li, W. J. Zhang, K. Ohnishi, I. Yamada, R. Ohno, K. Hashimoto, 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells, J. Photochem. Photobiol., B, 2001, 60, 79–86.

    Article  CAS  Google Scholar 

  263. M. H. Teiten, L. Bezdetnaya, J. L. Merlin, C. Bour-Dill, M. E. Pauly, M. Dicato, F. Guillemin, Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells, J. Photochem. Photobiol., B, 2001, 62, 146–152.

    Article  CAS  Google Scholar 

  264. M. A. Capella, L. S. Capella, A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors, J. Biomed. Sci., 2003, 10, 361–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asta Juzeniene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juzeniene, A., Peng, Q. & Moan, J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 6, 1234–1245 (2007). https://doi.org/10.1039/b705461k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b705461k

Navigation