Skip to main content
Log in

Fungal photoreceptors: sensory molecules for fungal development and behaviour

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light regulates fungal development and behaviour and activates metabolic pathways. In addition, light is one of the many signals that fungi use to perceive and interact with the environment. In the ascomycete Neurospora crassa blue light is perceived by the white collar (WC) complex, a protein complex formed by WC-1 and WC-2. WC-1 is a protein with a flavin-binding domain and a zinc-finger domain, and interacts with WC-2, another zinc-finger domain protein. The WC complex operates as a photoreceptor and a transcription factor for blue-light responses in Neurospora. Proteins similar to WC-1 and WC-2 have been described in other fungi, suggesting a general role for the WC complex as a fungal receptor for blue light. The ascomycete Aspergillus nidulans uses red light perceived by a fungal phytochrome as a signal to regulate sexual and asexual development. In addition, other photoreceptors, rhodopsins and cryptochromes, have been identified in fungi, but their functional relevance has not been elucidated. The investigation of fungal light responses provides an opportunity to understand how fungi perceive the environment and to identify the mechanisms involved in the regulation by light of cellular development and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Bahn, C. Xue, A. Idnurm, J. C. Rutherford, J. Heitman and M. E. Cardenas, Sensing the environment: lessons from fungi, Nat. Rev. Microbiol., 2007, 5, 57–69.

    Article  CAS  PubMed  Google Scholar 

  2. L. M. Corrochano and P. Galland, Photomorphogenesis and gravitropism in fungi, in The Mycota I. Growth, Differentiation and Sexuality, ed. U. Kües and R. Fischer, Springer-Verlag, Berlin, 2006, pp. 233–259.

    Chapter  Google Scholar 

  3. J. L. Mooney and L. N. Yager, Light is required for conidiation in Aspergillus nidulans, Genes Dev., 1990, 4, 1473–1482.

    Article  CAS  PubMed  Google Scholar 

  4. T. Kumagai, Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation in Alternaria tomato, Photochem. Photobiol., 1989, 50, 793–798.

    Article  Google Scholar 

  5. E. Cerdá-Olmedo, Phycomyces and the biology of light and color, FEMS Microbiol. Rev., 2001, 25, 503–512.

    Article  PubMed  Google Scholar 

  6. H. Linden, P. Ballario and G. Macino, Blue light regulation in Neurospora crassa, Fungal Genet. Biol., 1997, 22, 141–150.

    Article  CAS  PubMed  Google Scholar 

  7. Handbook of Photosensory Receptors, Wiley-VCH, ed. W. R. Briggs and J. L. Spudich, Weinheim, 2005

    Google Scholar 

  8. P. Galland, Forty years of blue-light research and no anniversary, Photochem. Photobiol., 1992, 56, 847–853.

    Article  Google Scholar 

  9. A. Idnurm and J. Heitman, Photosensing fungi: phytochrome in the spotlight, Curr. Biol., 2005, 15, R829–832.

    Article  CAS  PubMed  Google Scholar 

  10. J. Purschwitz, S. Muller, C. Kastner and R. Fischer, Seeing the rainbow: light sensing in fungi, Curr. Opin. Microbiol., 2006, 9, 566–571.

    Article  CAS  PubMed  Google Scholar 

  11. A. Herrera-Estrella and B. A. Horwitz, Looking through the eyes of fungi: molecular genetics of photoreception, Mol. Microbiol., 2007, 64, 5–15.

    Article  CAS  PubMed  Google Scholar 

  12. A. Idnurm and J. Heitman, Light controls growth and development via a conserved pathway in the fungal kingdom, PLoS Biol., 2005, 3, e95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. K. A. Borkovich, L. A. Alex, O. Yarden, M. Freitag, G. E. Turner, N. D. Read, S. Seiler, D. Bell-Pedersen, J. Paietta, N. Plesofsky, M. Plamann, M. Goodrich-Tanrikulu, U. Schulte, G. Mannhaupt, F. E. Nargang, A. Radford, C. Selitrennikoff, J. E. Galagan, J. C. Dunlap, J. J. Loros, D. Catcheside, H. Inoue, R. Aramayo, M. Polymenis, E. U. Selker, M. S. Sachs, G. A. Marzluf, I. Paulsen, R. Davis, D. J. Ebbole, A. Zelter, E. R. Kalkman, R. O’Rourke, F. Bowring, J. Yeadon, C. Ishii, K. Suzuki, W. Sakai and R. Pratt, Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism, Microbiol. Mol. Biol. Rev., 2004, 68, 1–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Ballario, P. Vittorioso, A. Magrelli, C. Talora, A. Cabibbo and G. Macino, White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein, EMBO J., 1996, 15, 1650–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. C. Froehlich, Y. Liu, J. J. Loros and J. C. Dunlap, White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter, Science, 2002, 297, 815–819.

    Article  CAS  PubMed  Google Scholar 

  16. Q. He, P. Cheng, Y. Yang, L. Wang, K. H. Gardner and Y. Liu, White collar-1, a DNA binding transcription factor and a light sensor, Science, 2002, 297, 840–843.

    Article  CAS  PubMed  Google Scholar 

  17. J. M. Christie, Phototropin blue-light receptors, Annu. Rev. Plant Biol., 2007, 58, 21–45.

    Article  CAS  PubMed  Google Scholar 

  18. M. Salomon, J. M. Christie, E. Knieb, U. Lempert and W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  PubMed  Google Scholar 

  19. P. Cheng, Q. He, Y. Yang, L. Wang and Y. Liu, Functional conservation of light, oxygen, or voltage domains in light sensing, Proc. Natl. Acad. Sci. USA, 2003, 100, 5938–5943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Linden and G. Macino, White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa, EMBO J., 1997, 16, 98–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Ballario, C. Talora, D. Galli, H. Linden and G. Macino, Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins, Mol. Microbiol., 1998, 29, 719–729.

    Article  CAS  PubMed  Google Scholar 

  22. P. Cheng, Y. Yang and Y. Liu, Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock, Proc. Natl. Acad. Sci. USA, 2001, 98, 7408–7413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Cheng, Y. Yang, K. H. Gardner and Y. Liu, PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora, Mol. Cell. Biol., 2002, 22, 517–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. Cheng, Y. Yang, L. Wang, Q. He and Y. Liu, WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2, J. Biol. Chem., 2003, 278, 3801–3808.

    Article  CAS  PubMed  Google Scholar 

  25. D. L. Denault, J. J. Loros and J. C. Dunlap, WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora, EMBO J., 2001, 20, 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C. Talora, L. Franchi, H. Linden, P. Ballario and G. Macino, Role of a white collar-1-white collar-2 complex in blue-light signal transduction, EMBO J., 1999, 18, 4961–4968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. C. Froehlich, J. J. Loros and J. C. Dunlap, Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY, Proc. Natl. Acad. Sci. USA, 2003, 100, 5914–5919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Schafmeier, A. Haase, K. Kaldi, J. Scholz, M. Fuchs and M. Brunner, Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor, Cell, 2005, 122, 235–246.

    Article  CAS  PubMed  Google Scholar 

  29. Q. He and Y. Liu, Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation, Genes Dev., 2005, 19, 2888–2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Schwerdtfeger and H. Linden, Blue light adaptation and desensitization of light signal transduction in Neurospora crassa, Mol. Microbiol., 2001, 39, 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  31. G. Arpaia, F. Cerri, S. Baima and G. Macino, Involvement of protein kinase C in the response of Neurospora crassa to blue light, Mol. Gen. Genet., 1999, 262, 314–322.

    Article  CAS  PubMed  Google Scholar 

  32. M. A. Collett, N. Garceau, J. C. Dunlap and J. J. Loros, Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2, Genetics, 2002, 160, 149–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. B. Grimaldi, P. Coiro, P. Filetici, E. Berge, J. R. Dobosy, M. Freitag, E. U. Selker and P. Ballario, The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1, Mol. Biol. Cell, 2006, 17, 4576–4583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Liu, Q. He and P. Cheng, Photoreception in Neurospora: a tale of two White Collar proteins, Cell. Mol. Life Sci., 2003, 60, 2131–2138.

    Article  CAS  PubMed  Google Scholar 

  35. J. C. Dunlap and J. J. Loros, Neurospora photoreceptors, in Handbook of Photosensory Receptors, ed. W. R. Briggs and J. L. Spudich, Wiley-VCH, Weinheim, 2005, pp. 371–389.

    Chapter  Google Scholar 

  36. C. Schwerdtfeger and H. Linden, Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa, Eur. J. Biochem., 2000, 267, 414–422.

    Article  CAS  PubMed  Google Scholar 

  37. P. Cheng, Y. Yang, C. Heintzen and Y. Liu, Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora, EMBO J., 2001, 20, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Z. A. Lewis, A. Correa, C. Schwerdtfeger, K. L. Link, X. Xie, R. H. Gomer, T. Thomas, D. J. Ebbole, D. Bell-Pedersen, Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa, Mol. Microbiol., 2002, 45, 917–931.

    Article  CAS  PubMed  Google Scholar 

  39. Q. He, H. Shu, P. Cheng, S. Chen, L. Wang and Y. Liu, Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop, J. Biol. Chem., 2005, 280, 17526–17532.

    Article  CAS  PubMed  Google Scholar 

  40. L. Franchi, V. Fulci and G. Macino, Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1, Mol. Microbiol., 2005, 56, 334–345.

    Article  CAS  PubMed  Google Scholar 

  41. K. Káldi, B. H. González and M. Brunner, Transcriptional regulation of the Neurospora circadian clock gene wc-1 affects the phase of circadian output, EMBO Rep., 2006, 7, 199–204.

    Article  PubMed  CAS  Google Scholar 

  42. M. Brunner and T. Schafmeier, Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora, Genes Dev., 2006, 20, 1061–1074.

    Article  CAS  PubMed  Google Scholar 

  43. J. C. Dunlap, Proteins in the Neurospora circadian clockworks, J. Biol. Chem., 2006, 281, 28489–28493.

    Article  CAS  PubMed  Google Scholar 

  44. K. Lee, J. J. Loros and J. C. Dunlap, Interconnected feedback loops in the Neurospora circadian system, Science, 2000, 289, 107–110.

    Article  CAS  PubMed  Google Scholar 

  45. M. Merrow, L. Franchi, Z. Dragovic, M. Görl, J. Johnson, M. Brunner, G. Macino and T. Roenneberg, Circadian regulation of the light input pathway in Neurospora crassa, EMBO J., 2001, 20, 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. T. Schafmeier, K. Káldi, A. Diernfellner, C. Mohr and M. Brunner, Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator, Genes Dev., 2006, 20, 297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. P. Cheng, Q. He, Q. He, L. Wang and Y. Liu, Regulation of the Neurospora circadian clock by an RNA helicase, Genes Dev., 2005, 19, 234–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. W. J. Belden, J. J. Loros and J. C. Dunlap, Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH, Mol. Cell, 2007, 25, 587–600.

    Article  CAS  PubMed  Google Scholar 

  49. Q. He, J. Cha, Q. He, H. C. Lee, Y. Yang and Y. Liu, CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop, Genes Dev., 2006, 20, 2552–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. F. R. Lauter and C. Yanofsky, Day/night and circadian rhythm control of con gene expression in Neurospora, Proc. Natl. Acad. Sci. USA, 1993, 90, 8249–8253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. C. Heintzen, J. J. Loros and J. C. Dunlap, The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting, Cell, 2001, 104, 453–464.

    Article  CAS  PubMed  Google Scholar 

  52. C. Schwerdtfeger and H. Linden, VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation, EMBO J., 2003, 22, 4846–4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. B. Shrode, Z. A. Lewis, L. D. White, D. Bell-Pedersen and D. J. Ebbole, vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation, Fungal Genet. Biol., 2001, 32, 169–181.

    Article  CAS  PubMed  Google Scholar 

  54. S. Casas-Flores, M. Ríos-Momberg, M. Bibbins, P. Ponce-Noyola, A. Herrera-Estrella, BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride, Microbiology, 2004, 150, 3561–3569.

    Article  CAS  PubMed  Google Scholar 

  55. T. Rosales-Saavedra, E. U. Esquivel-Naranjo, S. Casas-Flores, P. Martínez-Hernández, E. Ibarra-Laclette, C. Cortes-Penagos, A. Herrera-Estrella, Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays, Microbiology, 2006, 152, 3305–3317.

    Article  CAS  PubMed  Google Scholar 

  56. S. Casas-Flores, M. Ríos-Momberg, T. Rosales-Saavedra, P. Martínez-Hernandez, V. Olmedo-Monfil, A. Herrera-Estrella, Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway, Eukaryot. Cell, 2006, 5, 499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. K. Lee, P. Singh, W. C. Chung, J. Ash, T. S. Kim, L. Hang and S. Park, Light regulation of asexual development in the rice blast fungus Magnaporthe oryzae, Fungal Genet. Biol., 2006, 43, 694–706.

    Article  CAS  PubMed  Google Scholar 

  58. J. Kihara, A. Moriwaki, N. Tanaka, M. Ueno and S. Arase, Characterization of the BLR1 gene encodinga putative blue-light regulator in the phytopathogenic fungus Bipolaris oryzae, FEMS Microbiol. Lett., 2007, 266, 110–118.

    Article  CAS  PubMed  Google Scholar 

  59. R. Ambra, B. Grimaldi, S. Zamboni, P. Filetici, G. Macino and P. Ballario, Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa, Fungal Genet. Biol., 2004, 41, 688–697.

    Article  CAS  PubMed  Google Scholar 

  60. L. M. Lombardi and S. Brody, Circadian rhythms in Neurospora crassa: clock gene homologues in fungi, Fungal Genet. Biol., 2005, 42, 887–892.

    Article  CAS  PubMed  Google Scholar 

  61. K. Terashima, K. Yuki, H. Muraguchi, M. Akiyama and T. Kamada, The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light, Genetics, 2005, 171, 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. K. Lu, K. H. Sun and W. C. Shen, Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans, Mol. Microbiol., 2005, 56, 480–491.

    Article  CAS  PubMed  Google Scholar 

  63. A. Idnurm, J. Rodríguez-Romero, L. M. Corrochano, C. Sanz, E. A. Iturriaga, A. P. Eslava and J. Heitman, The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses, Proc. Natl. Acad. Sci. USA, 2006, 103, 4546–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. J. Rodríguez-Romero and L. M. Corrochano, Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light, Mol. Microbiol., 2006, 61, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  65. P. Galland, Phototropism of the Phycomyces sporangiophore: a comparison with higher plants, Photochem. Photobiol., 1990, 52, 233–248.

    Article  Google Scholar 

  66. L. Fukshansky, Intracellular processing of a spatially non-uniform stimulus: case-study of phototropism in Phycomyces, J. Photochem. Photobiol., 1993, B19, 161–186.

    Article  Google Scholar 

  67. F. Silva, S. Torres-Martínez and V. Garre, Distinct white collar-1 genes control specific light responses in Mucor circinelloides, Mol. Microbiol., 2006, 61, 1023–1037.

    Article  CAS  PubMed  Google Scholar 

  68. M. Schmoll, L. Franchi and C. P. Kubicek, Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light, Eukaryot. Cell, 2005, 4, 1998–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. N. C. Rockwell, Y. S. Su and J. C. Lagarias, Phytochrome structure and signaling mechanisms, Annu. Rev. Plant Biol., 2006, 57, 837–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. B. Karniol, J. R. Wagner, J. M. Walker and R. D. Vierstra, Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors, Biochem. J., 2005, 392, 103–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. Blumenstein, K. Vienken, R. Tasler, J. Purschwitz, D. Veith, N. Frankenberg-Dinkel and R. Fischer, The Aspergillus nidulans phytochrome FphA represses sexual development in red light, Curr. Biol., 2005, 15, 1833–1838.

    Article  CAS  PubMed  Google Scholar 

  72. A. C. Froehlich, B. Noh, R. D. Vierstra, J. Loros and J. C. Dunlap, Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa, Eukaryot. Cell, 2005, 4, 2140–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R. M. Klein and D. T. Klein, Interaction of ionizing and visible radiation in mutation induction in Neurospora crassa, Am. J. Bot., 1962, 49, 870–874.

    Article  Google Scholar 

  74. J. C. Dunlap and J. J. Loros, The Neurospora circadian system, J. Biol. Rhythms, 2004, 19, 414–424.

    Article  CAS  PubMed  Google Scholar 

  75. Y. Liu, D. Bell-Pedersen, Circadian rhythms in Neurospora crassa and other filamentous fungi, Eukaryot. Cell, 2006, 5, 1184–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. K. J. Hellingwerf, The molecular basis of sensing and responding to light in microorganisms, Antonie Van Leeuwenhoek, 2002, 81, 51–59.

    Article  CAS  PubMed  Google Scholar 

  77. J. L. Spudich, C. S. Yang, K. H. Jung and E. N. Spudich, Retinylidene proteins: structures and functions from archaea to humans, Annu. Rev. Cell Dev. Biol., 2000, 16, 365–392.

    Article  CAS  PubMed  Google Scholar 

  78. J. L. Spudich, The multitalented microbial sensory rhodopsins, Trends Microbiol., 2006, 14, 480–487.

    Article  CAS  PubMed  Google Scholar 

  79. A. K. Sharma, J. L. Spudich and W. F. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility, Trends Microbiol., 2006, 14, 463–469.

    Article  CAS  PubMed  Google Scholar 

  80. L. S. Brown, Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions, Photochem. Photobiol. Sci., 2004, 3, 555–565.

    Article  CAS  PubMed  Google Scholar 

  81. L. S. Brown and K. H. Jung, Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism, Photochem. Photobiol. Sci., 2006, 5, 538–546.

    Article  CAS  PubMed  Google Scholar 

  82. J. A. Bieszke, E. L. Braun, L. E. Bean, S. Kang, D. O. Natvig and K. A. Borkovich, The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins, Proc. Natl. Acad. Sci. USA, 1999, 96, 8034–8039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. V. Bergo, E. N. Spudich, J. L. Spudich and K. J. Rothschild, A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins, Photochem. Photobiol., 2002, 76, 341–349.

    Article  CAS  PubMed  Google Scholar 

  84. J. A. Bieszke, E. N. Spudich, K. L. Scott, K. A. Borkovich and J. L. Spudich, A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment, Biochemistry, 1999, 38, 14138–14145.

    Article  CAS  PubMed  Google Scholar 

  85. L. S. Brown, A. K. Dioumaev, J. K. Lanyi, E. N. Spudich and J. L. Spudich, Photochemical reaction cycle and proton transfers in Neurospora rhodopsin, J. Biol. Chem., 2001, 276, 32495–32505.

    Article  CAS  PubMed  Google Scholar 

  86. Y. Furutani, A. G. Bezerra, Jr., S. Waschuk, M. Sumii, L. S. Brown and H. Kandori, FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization, Biochemistry, 2004, 43, 9636–9646.

    Article  CAS  PubMed  Google Scholar 

  87. A. Idnurm and B. J. Howlett, Characterization of an opsin gene from the ascomycete Leptosphaeria maculans, Genome, 2001, 44, 167–171.

    Article  CAS  PubMed  Google Scholar 

  88. S. A. Waschuk, A. G. Bezerra, Jr., L. Shi and L. S. Brown, Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote, Proc. Natl. Acad. Sci. USA, 2005, 102, 6879–6883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. M. Sumii, Y. Furutani, S. A. Waschuk, L. S. Brown and H. Kandori, Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote, Biochemistry, 2005, 44, 15159–15166.

    Article  CAS  PubMed  Google Scholar 

  90. Y. Furutani, M. Sumii, Y. Fan, L. Shi, S. A. Waschuk, L. S. Brown and H. Kandori, Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump, Biochemistry, 2006, 45, 15349–15358.

    Article  CAS  PubMed  Google Scholar 

  91. M. M. Prado, A. Prado-Cabrero, R. Fernández-Martín and J. Avalos, A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi, Curr. Genet., 2004, 46, 47–58.

    Article  CAS  PubMed  Google Scholar 

  92. J. Saranak and K. W. Foster, Rhodopsin guides fungal phototaxis, Nature, 1997, 387, 465–466.

    Article  CAS  PubMed  Google Scholar 

  93. C. Lin and T. Todo, The cryptochromes, Genome Biol., 2005, 6, 220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. H. Daiyasu, T. Ishikawa, K. Kuma, S. Iwai, T. Todo and H. Toh, Identification of cryptochrome DASH from vertebrates, Genes Cells, 2004, 9, 479–495.

    Article  CAS  PubMed  Google Scholar 

  95. C. P. Selby and A. Sancar, A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity, Proc. Natl. Acad. Sci. USA, 2006, 103, 17696–17700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. R. Brudler, K. Hitomi, H. Daiyasu, H. Toh, K. Kucho, M. Ishiura, M. Kanehisa, V. A. Roberts, T. Todo, J. A. Tainer and E. D. Getzoff, Identification of a new cryptochrome class. Structure, function, and evolution, Mol. Cell, 2003, 11, 59–67.

    Article  CAS  PubMed  Google Scholar 

  97. Y. Ogura, Y. Yoshida, K. Ichimura, C. Aoyagi, N. Yabe and K. Hasunuma, Isolation and characterization of Neurospora crassa nucleoside diphosphate kinase NDK-1, Eur. J. Biochem., 1999, 266, 709–714.

    Article  CAS  PubMed  Google Scholar 

  98. Y. Ogura, Y. Yoshida, N. Yabe and K. Hasunuma, A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa, J. Biol. Chem., 2001, 276, 21228–21234.

    Article  CAS  PubMed  Google Scholar 

  99. B. Lee, Y. Yoshida and K. Hasunuma, Photomorphogenetic characteristics are severely affected in nucleoside diphosphate kinase-1 (ndk-1)-disrupted mutants in Neurospora crassa, Mol. Genet. Genomics, 2006, 275, 9–17.

    Article  CAS  PubMed  Google Scholar 

  100. Y. Yoshida and K. Hasunuma, Light-dependent subcellular localization of nucleoside diphosphate kinase-1 in Neurospora crassa, FEMS Microbiol. Lett., 2006, 261, 64–68.

    Article  CAS  PubMed  Google Scholar 

  101. Y. Yoshida and K. Hasunuma, Reactive oxygen species affect photomorphogenesis in Neurospora crassa, J. Biol. Chem., 2004, 279, 6986–6993.

    Article  CAS  PubMed  Google Scholar 

  102. Y. Yoshida, Y. Ogura and K. Hasunuma, Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in Neurospora crassa, FEBS Lett., 2006, 580, 3282–3286.

    Article  CAS  PubMed  Google Scholar 

  103. H. Kim, K. Han, K. Kim, D. Han, K. Jahng and K. Chae, The veA gene activates sexual development in Aspergillus nidulans, Fungal Genet. Biol., 2002, 37, 72–80.

    Article  CAS  PubMed  Google Scholar 

  104. S. M. Stinnett, E. A. Espeso, L. Cobeño, L. Araújo-Bazán and A. M. Calvo, Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light, Mol. Microbiol., 2007, 63, 242–255.

    Article  CAS  PubMed  Google Scholar 

  105. J. L. Mooney, D. E. Hassett and L. N. Yager, Genetic analysis of suppressors of the veA1 mutation in Aspergillus nidulans, Genetics, 1990, 126, 869–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. L. N. Yager, H. O. Lee, D. L. Nagle and J. E. Zimmerman, Analysis of fluG mutations that affect light-dependent conidiation in Aspergillus nidulans, Genetics, 1998, 149, 1777–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. B. N. Lee and T. H. Adams, The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I, Genes Dev., 1994, 8, 641–651.

    Article  CAS  PubMed  Google Scholar 

  108. S. Busch, S. E. Eckert, S. Krappmann and G. H. Braus, The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans, Mol. Microbiol., 2003, 49, 717–730.

    Article  CAS  PubMed  Google Scholar 

  109. A. Losi, The bacterial counterparts of plant phototropins, Photochem. Photobiol. Sci., 2004, 3, 566–574.

    Article  CAS  PubMed  Google Scholar 

  110. K. Lee, J. C. Dunlap and J. J. Loros, Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa, Genetics, 2003, 163, 103–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Z. Dragovic, Y. Tan, M. Görl, T. Roenneberg and M. Merrow, Light reception and circadian behavior in ‘blind’ and ‘clock-less’ mutants of Neurospora crassa, EMBO J., 2002, 21, 3643–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. A. V. Greene, N. Keller, H. Haas, D. Bell-Pedersen, A circadian oscillator in Aspergillus spp. regulates daily development and gene expression, Eukaryot. Cell, 2003, 2, 231–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. L. M. Corrochano, E. Cerdá-Olmedo, Photomorphogenesis in Phycomyces: competence period and stimulus-response relationships, J. Photochem. Photobiol., 1990, B5, 255–266.

    Article  Google Scholar 

  114. L. M. Corrochano, P. Galland, E. D. Lipson, E. Cerdá-Olmedo, Photomorphogenesis in Phycomyces: Fluence-response curves and action spectra, Planta, 1988, 174, 315–320.

    Article  CAS  PubMed  Google Scholar 

  115. Y. Yamazaki, H. Kataoka, A. Miyazaki, M. Watanabe and T. Ootaki, Action spectra for photoinhibition of sexual development in Phycomyces blakesleeanus, Photochem. Photobiol., 1996, 64, 387–392.

    Article  CAS  Google Scholar 

  116. F. Degli-Innocenti, U. Pohl and V. E. A. Russo, Photoinduction of protoperithecia in Neurospora crassa by blue light, Photochem. Photobiol., 1983, 37, 49–51.

    Article  Google Scholar 

  117. S. K. Crosthwaite, J. J. Loros and J. C. Dunlap, Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript, Cell, 1995, 81, 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  118. B. A. Horwitz, A. Perlman and J. Gressel, Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling, Photochem. Photobiol., 1990, 51, 99–104.

    Article  CAS  PubMed  Google Scholar 

  119. R. I. Sánchez-Murillo, M. Torre-Martínez, J. Aguirre-Linares, A. Herrera-Estrella, Light-regulated asexual reproduction in Paecilomyces fumosoroseus, Microbiology, 2004, 150, 311–319.

    Article  PubMed  CAS  Google Scholar 

  120. I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz and P. Bork, SMART 5: domains in the context of genomes and networks, Nucleic Acids Res., 2006, 34, D257–260.

    Article  CAS  PubMed  Google Scholar 

  121. A. Marchler-Bauer and S. H. Bryant, CD-Search: protein domain annotations on the fly, Nucleic Acids Res., 2004, 32, W327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Corrochano.

Additional information

The HTML version of this article has been enhanced with colour images

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrochano, L.M. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6, 725–736 (2007). https://doi.org/10.1039/b702155k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b702155k

Navigation