Skip to main content
Log in

Redox compounds influence on the NAD(P)H:FMN—oxidoreductase—luciferase bioluminescent system

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A review of the mechanisms of the exogenous redox compounds influence on the bacterial coupled enzyme system: NAD(P)H:FMN—oxidoreductase—luciferase has been done. A series of quinones has been used as model organic oxidants. The three mechanisms of the quinones’ effects on bioluminescence were suggested: (1) inhibition of the NADH-dependent redox reactions; (2) interactions between the compounds and the enzymes of the coupled enzyme system; and (3) intermolecular energy migration. The correlation between the kinetic parameters of bioluminescence and the standard redox potential of the quinones proved that the inhibition of redox reactions was the key mechanism by which the quinones decrease the light emission intensity. The changes in the fluorescence anisotropy decay of the endogenous flavin of the enzyme preparations showed the direct interaction between quinones and enzymes. It has been demonstrated that the intermolecular energy migration mechanism played a minor role in the effect of quinones on the bioluminescence. A comparative analysis of the effect of quinones, phenols and inorganic redox compounds on bioluminescent coupled enzyme systems has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Choi, M. B. Gu, Phenolic toxicity-detection and classification through the use of recombinant bioluminescent Escherichia coli cells, Environ. Toxicol. Chem., 2001, 20, 248–255.

    CAS  PubMed  Google Scholar 

  2. R. J. Mitchell, M. B. Gu, An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage, Appl. Microbiol. Biotechnol., 2004, 64, 46–52.

    Article  CAS  Google Scholar 

  3. V. A. Kratasyuk, E. V. Vetrova, N. S. Kudryasheva, Bioluminescent water quality monitoring of salt lake Shira, Luminescence, 1999, 14, 193–195.

    Article  CAS  Google Scholar 

  4. V. A. Kratasyuk, E. N. Esimbekova, M. I. Gladyshev, E. B. Khromichek, A. M. Kuznetsov, E. A. Ivanova, The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems, Chemosphere, 2001, 42, 909–915.

    Article  CAS  Google Scholar 

  5. D. I. Stom, T. A. Geel, A. E. Balayan, A. M. Kuznetsov, S. E. Medvedeva, Bioluminescent method in studing the complex effect of sewage components, Arch. Environ. Contam. Toxicol., 1992, 22, 203–208.

    Article  CAS  Google Scholar 

  6. E. V. Vetrova, V. A. Kratasyuk, N. S. Kudryasheva, Bioluminescent characteristics map of Shira lake water, Aquat. Ecol., 2002, 36, 309–315.

    Article  CAS  Google Scholar 

  7. N. S. Kudryasheva, E. V. Shalaeva, E. N. Zadorozhnaya, V. A. Kratasyuk, D. I. Stom, A. E. Balayan, Patterns of inhibition of bacterial bioluminescence in vitro by quinones and phenols-components of sewage, Biofizika, 1994, 39, 455–464.

    Google Scholar 

  8. S. F. D’Souza, Microbial biosensors, Biosens. Bioelectron., 2001, 16, 337–353.

    Article  Google Scholar 

  9. N. Kudryasheva, E. Vetrova, A. Kuznetsov, V. Kratasyuk, D. Stom, Bioluminescent assays: Effects of quinones and phenols, Ecotoxicol. Environ. Saf., 2002, 53, 221–225.

    Article  CAS  Google Scholar 

  10. N. A. Tyulkova, Purification of bacterial luciferase from Photobacterium leiognathi with the use of FPLC-system, in Luminescence, ed. B. Jezowska-Trzebiatowska, B. Kochel, J. Stawinski and W. Strek, Biological World Scientific, Singapore, 1990, pp. 369–374.

    Google Scholar 

  11. N. S. Kudrysheva, V. A. Kratasyuk, P. I. Belobrov, Bioluminescent analysis. The action of toxicants: Physical-chemical regularities of the toxicants effects, Anal. Lett., 1994, 27, 2931–2938.

    Article  Google Scholar 

  12. E. V. Vetrova and N. S. Kudryasheva, Mechanism of quinones’ influence on bioluminescent enzyme system NAD(P)H:FMN-oxidoreductase-luciferase, in Bioluminescence & chemiluminescence: progress & current applications, ed. P. Stanley and L. Kricka, World Scientific Publishing, Singapore, 2002, pp. 101–104.

    Chapter  Google Scholar 

  13. E. V. Vetrova, N. S. Kudryasheva, A. J. Visser, A. von Hoek, Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase, Luminescence, 2005, 20, 205–209.

    Article  CAS  Google Scholar 

  14. van Hoek, A. J. W. G. Visser, Pulse selection system with electro-optic modulators applied to mode-locked cw lasers and time-resolved single photon counting, Rev. Sci. Instrum., 1981, 52, 1199–1205.

    Article  Google Scholar 

  15. J. C. Brochon, Maximum entropy method of data analysis in time-resolved spectroscopy, in Methods in Enzymology, 240, Numerical Computer Methods, ed. B. M. L. Johnson and L. Brand, 1994, pp. 262–311.

    Google Scholar 

  16. E. G. Novikov, A. van Hoek, A. J. W. G. Visser, J. W. Hofstraat, Linear algorithms for stretched exponential decay analysis, Opt. Commun., 1999, 166, 189–198.

    Article  CAS  Google Scholar 

  17. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson and L. Brand, The global analysis of fluorescence intensity and anisotropy decay data: Second-generation theory and programs, in Topics in Fluorescence Spectroscopy, Principles, ed. J. R. Lakowicz, Plenum, New York, 1991, vol. 2.

    Google Scholar 

  18. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, 1999.

    Book  Google Scholar 

  19. S. Inouye, NAD(P)H-flavin oxidoreductase from Vibrio fischeri ATCC-7744 is a flavoprotein, FEBS Lett., 1994, 347, 163–168.

    Article  CAS  Google Scholar 

  20. S. C. Tu, Reduced flavin: donor and acceptor enzymes and mechanisms of channeling, Antioxid. Redox Signaling, 2001, 3, 881–97.

    Article  CAS  Google Scholar 

  21. C. J. Wei, B. Lei, S. C. Tu, Characterization of the binding of Photobacterium phosphoreum p-flavin by Vibrio harveyi luciferase, Arch. Biochem. Biophys., 2001, 396, 199–206.

    Article  CAS  Google Scholar 

  22. E. V. Vetrova, N. S. Kudryasheva, A. J. Visser, A. von Hoek, Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase, Luminescence, 2005, 20, 205–209.

    Article  CAS  Google Scholar 

  23. R. Leenders, A. van Hoek, M. van Iersel, C. Veeger, A. J. W. G. Visser, Flavin dynamics in oxidized Clostridium beijerinckii flavodoxin as assessed by time-resolved polarized fluorescence, Eur. J. Biochem., 1993, 218, 977–984.

    Article  CAS  Google Scholar 

  24. N. S. Kudryasheva, E. V. Nemtseva, A. J. W. G. Visser, A. van Hoek, Interaction of aromatic compounds with Photobacterium leiognathi luciferase: fluorescence anisotropy study, Luminescence, 2003, 18, 156–161.

    Article  CAS  Google Scholar 

  25. E. V. Vetrova, Mechanisms of influence redox active compounds on coupled enzyme system NADH:FMN–oxidoreductase–luciferase, Teethes of dissertation, Institute of Biophysics SB RAS, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vetrova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrova, E.V., Kudryasheva, N.S. & Kratasyuk, V.A. Redox compounds influence on the NAD(P)H:FMN—oxidoreductase—luciferase bioluminescent system. Photochem Photobiol Sci 6, 35–40 (2007). https://doi.org/10.1039/b608152e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b608152e

Navigation