Skip to main content
Log in

Picosecond time-resolved infrared spectroscopic investigation into electron localisation in the excited states of Re(i) polypyridyl complexes with bridging ligands

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Mono- and binuclear complexes of Re(CO)3Cl with dipyrido[2,3-a:3′,2′-c]-6,7-dimethylphenazine (ppbMe2) were synthesised and their photophysical properties probed using picosecond time-resolved infrared spectroscopy (TRIR). Excitation of these complexes in solution at 400 nm produces short-lived excited states. The IR spectrum of the excited state of the mononuclear [Re(CO)3Cl(ppbMe2)] have ν(CO) bands shifted to higher wavenumber relative to those of the ground state. This is consistent with formation of a 3MLCT excited state. The IR spectrum of the excited state of the bimetallic [(Re(CO)3Cl)2(μ-ppbMe2)] shows the formation of two distinct groups of ν(CO) bands. This is interpreted as the formation of two distinct Re sites arising from a localised MLCT state with formally oxidised Re centre and a formally reduced bridging ligand. The ν(CO) bands of the adjacent Re centre are affected by the reduction of the bridging ligand. On the IR timescale the excited state structure is best formulated as [Cl(CO)3ReII(μ-ppbMe2·−)ReI(CO)3Cl].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, M. Gomez-Lopez and J. F. Stoddart, Molecular machines, Acc. Chem. Res., 1998, 31, 405–414.

    Article  CAS  Google Scholar 

  2. F. Scandola, M. T. Indelli, C. Chiorboli and C. A. Bignozzi, Photoinduced Electron and Energy-Transfer in Polynuclear Complexes, Top. Curr. Chem., 1990, 158, 73–149.

    Article  CAS  Google Scholar 

  3. K. D. Demadis, C. M. Hartshorn and T. J. Meyer, The localized-to-delocalized transition in mixed-valence chemistry, Chem. Rev., 2001, 101, 2655–2685.

    Article  CAS  PubMed  Google Scholar 

  4. C. Kitamura, S. Tanaka and Y. Yamashita, Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units, Chem. Mater., 1996, 8, 570.

    Article  CAS  Google Scholar 

  5. Q. T. Zhang and J. M. Tour, Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers, J. Am. Chem. Soc., 1998, 120, 5355–5362.

    Article  CAS  Google Scholar 

  6. M. W. George, F. P. A. Johnson, J. J. Turner and J. R. Westwell, Excited-state properties of [(OC)5W(L)W(CO)5] [L = 4,4′-bipyridyl (4,4′-bipy) or pyrazine] and [(OC)5W(4,4′-bipy)], J. Chem. Soc., Dalton Trans., 1995, 2711–2718.

    Google Scholar 

  7. J. R. Schoonover, K. C. Gordon, R. Argazzi, W. H. Woodruff, K. A. Peterson, C. A. Bignozzi, R. B. Dyer and T. J. Meyer, Application of Transient Infrared-Spectroscopy to Intramolecular Energy-Transfer in (Phen)(CO)3Re(i)(NC)Ru(ii)(CN)(Bpy)2+, J. Am. Chem. Soc., 1993, 115, 10996–10997.

    Article  CAS  Google Scholar 

  8. L. C. Abbott, C. J. Arnold, T. Q. Ye, K. C. Gordon, R. N. Perutz, R. E. Hester and J. N. Moore, Ultrafast time-resolved UV-visible and infrared absorption spectroscopy of binuclear rhenium(i) polypyridyl complexes in solution, J. Phys. Chem. A, 1998, 102, 1252–1260.

    Article  CAS  Google Scholar 

  9. M. B. Robin and P. Day, Mixed Valence Chemistry - A Survey and Classification, Adv. Inorg. Chem. Rad., 1967, 10, 247.

    CAS  Google Scholar 

  10. J. H. Elias and R. S. Drago, Electronic structure of N,N′-bis[pentaammineruthenium(ii,iii)]pyrazine5+, Inorg. Chem., 1972, 11, 415–418.

    Article  CAS  Google Scholar 

  11. N. S. Hush, Intervalence-transfer absorption. II. Theoretical considerations and spectroscopic data, Prog. Inorg. Chem., 1967, 8, 391–444.

    CAS  Google Scholar 

  12. N. S. Hush, Distance dependence of electron transfer rates, Coord. Chem. Rev., 1985, 64, 135–157.

    Article  CAS  Google Scholar 

  13. R. W. Callahan, G. M. Brown and T. J. Meyer, Effects of weak metal-metal interactions in ligand-bridged complexes of ruthenium. Dimeric complexes containing ruthenium ions in different coordination environments, Inorg. Chem., 1975, 14, 1443–1453.

    Article  CAS  Google Scholar 

  14. J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. de Cola and L. Flamigni, Ruthenium(ii) and Osmium(ii) Bis(Terpyridine) Complexes in Covalently-Linked Multicomponent Systems - Synthesis, Electrochemical-Behavior, Absorption-Spectra, and Photochemical and Photophysical Properties, Chem. Rev., 1994, 94, 993–1019.

    Article  CAS  Google Scholar 

  15. D. E. Richardson and H. Taube, Determination of E2-Degrees-E1-Degrees in Multistep Charge-Transfer by Stationary-Electrode Pulse and Cyclic Voltammetry-Application to Binuclear Ruthenium Ammines, Inorg. Chem., 1981, 20, 1278–1285.

    Article  CAS  Google Scholar 

  16. D. E. Richardson and H. Taube, Electronic Interactions in Mixed-Valence Molecules as Mediated by Organic Bridging Groups, J. Am. Chem. Soc., 1983, 105, 40–51.

    Article  CAS  Google Scholar 

  17. G. M. Tom, C. Creutz and H. Taube, Mixed-Valence Complexes of Ruthenium Ammines with 4,4′-Bipyridine as Bridging Ligand, J. Am. Chem. Soc., 1974, 96, 7827–7829.

    Article  CAS  Google Scholar 

  18. C. Creutz, Mixed-Valence Complexes of d5-d6 Metal Centers, Prog. Inorg. Chem., 1983, 30, 1–73.

    CAS  Google Scholar 

  19. K. D. Demadis, G. A. Neyhart, E. M. Kober, P. S. White and T. J. Meyer, Intervalence Transfer at the Localized-to-Delocalized, Mixed-Valence Transition in Osmium Polypyridyl Complexes, Inorg. Chem., 1999, 38, 5948–5959.

    Article  CAS  PubMed  Google Scholar 

  20. K. D. Demadis, G. A. Neyhart, E. M. Kober and T. J. Meyer, Vibrational Mapping at the Mixed-Valence, Localized-to-Delocalized Transition, J. Am. Chem. Soc., 1998, 120, 7121–7122.

    Article  CAS  Google Scholar 

  21. D. H. Oh and S. G. Boxer, Stark-Effect Spectra of Ru(Diimine)32+ Complexes, J. Am. Chem. Soc., 1989, 111, 1130–1131.

    Article  CAS  Google Scholar 

  22. D. H. Oh, M. Sano and S. G. Boxer, Electroabsorption (Stark-Effect) Spectroscopy of Monoruthenium and Biruthenium Charge-Transfer Complexes-Measurements of Changes in Dipole-Moments and Other Electrooptic Properties, J. Am. Chem. Soc., 1991, 113, 6880–6890.

    Article  CAS  Google Scholar 

  23. C. Chiorboli, M. A. J. Rodgers and F. Scandola, Ultrafast processes in bimetallic dyads with extended aromatic bridges. Energy and electron transfer pathways in tetrapyridophenazine-bridged complexes, J. Am. Chem. Soc., 2003, 125, 483–491.

    Article  CAS  PubMed  Google Scholar 

  24. K.-I. Ota, H. Sasaki, T. Matsui, T. Hamaguchi, T. Yamaguchi, T. Ito, H. Kido and C. P. Kubiak, Syntheses and Properties of a Series of Oxo-Centered Triruthenium Complexes and Their Bridged Dimers with Isocyanide Ligands at Terminal and Bridging Positions, Inorg. Chem., 1999, 38, 4070–4078.

    Article  CAS  Google Scholar 

  25. T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, H. Kido, I. S. Zavarine, T. Richmond, J. Washington and C. P. Kubiak, Electron Transfer on the Infrared Vibrational Time Scale in the Mixed Valence State of 1,4-Pyrazine- and 4,4′-Bipyridine-Bridged Ruthenium Cluster Complexes, J. Am. Chem. Soc., 1999, 121, 4625–4632.

    Article  CAS  Google Scholar 

  26. C. H. Londergan and C. P. Kubiak, Electron transfer and dynamic infrared-band coalescence: It looks like dynamic NMR spectroscopy, but a billion times faster, Chem.-Eur. J., 2003, 9, 5962–5969.

    Article  CAS  PubMed  Google Scholar 

  27. C. H. Londergan, J. C. Salsman, S. Ronco, L. M. Dolkas and C. P. Kubiak, Solvent Dynamical Control of Electron-Transfer Rates in Mixed-Valence Complexes Observed by Infrared Spectral Line Shape Coalescence, J. Am. Chem. Soc., 2002, 124, 6236–6237.

    Article  CAS  PubMed  Google Scholar 

  28. C. H. Londergan, J. C. Salsman, S. Ronco and C. P. Kubiak, Infrared Activity of Symmetric Bridging Ligand Modes in Pyrazine-Bridged Hexaruthenium Mixed-Valence Clusters, Inorg. Chem., 2003, 42, 926–928.

    Article  CAS  PubMed  Google Scholar 

  29. C. H. Londergan and C. P. Kubiak, Vibronic Participation of the Bridging Ligand in Electron Transfer and Delocalization: New Application of a Three-State Model in Pyrazine-Bridged Mixed-Valence Complexes of Trinuclear Ruthenium Clusters, J. Phys. Chem. A, 2003, 107, 9301–9311.

    Article  CAS  Google Scholar 

  30. C. H. Londergan, R. C. Rocha, M. G. Brown, A. P. Shreve and C. P. Kubiak, Intervalence Involvement of Bridging Ligand Vibrations in Hexaruthenium Mixed-Valence Clusters Probed by Resonance Raman Spectroscopy, J. Am. Chem. Soc., 2003, 125, 13912–13913.

    Article  CAS  PubMed  Google Scholar 

  31. T. P. Ortiz, J. A. Marshall, L. A. Emmert, J. Yang, W. Choi, A. L. Costello and J. A. Brozik, Transient Mixed-Valence Character of ReI4(CO)12(4,4′-bpy)4Cl4, Inorg. Chem., 2004, 43, 132–141.

    Article  CAS  PubMed  Google Scholar 

  32. C. Chiorboli, M. A. J. Rodgers and F. Scandola, Ultrafast processes in bimetallic dyads with extended aromatic bridges. Energy- and electron-transfer pathways in tetrapyridophenazine-bridged complexes, J. Am. Chem. Soc., 2003, 125, 483–491.

    Article  CAS  PubMed  Google Scholar 

  33. A. Flood, R. B. Girling, K. C. Gordon, R. E. Hester, J. N. Moore and M. I. J. Polson, Revealing the chromophoric composition of multichromophoric polypyridyl complexes of Re(i) and Os(ii): a resonance Raman study, J. Raman Spectrosc., 2002, 33, 434–442.

    Article  CAS  Google Scholar 

  34. S. A. Moya, R. Pastene, R. Schmidt, J. Guerrero, R. Sartori, Polyhedron, 1992, 11, 1665.

    Article  CAS  Google Scholar 

  35. M. I. J. Polson, S. L. Howell, A. Flood, A. G. Blackman and K. C. Gordon, Synthesis and electronic properties of mononuclear osmium(ii) and rhenium(i) complexes containing ligands derived from [2,3-a:3′,2′-c]dipyridophenazine (ppb), Polyhedron, 2004, 23, 1427–1439.

    Article  CAS  Google Scholar 

  36. M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. Ma, D. Phillips, A. W. Parker and M. W. George, Development of a broadband picosecond infrared spectrometer and its incorporation into an existing ultrafast time-resolved resonance Raman, UV/visible, and fluorescence spectroscopic apparatus, Appl. Spectrosc., 2003, 57, 367–380.

    Article  CAS  PubMed  Google Scholar 

  37. T. P. Dougherty and E. J. Heilweil, Transient infrared spectroscopy of (η5-C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions, J. Chem. Phys., 1994, 100, 4006–4009.

    Article  CAS  Google Scholar 

  38. T. P. Dougherty, W. T. Grubbs and E. J. Heilweil, Photochemistry of Rh(CO)2(acetylacetonate) and Related Metal Dicarbonyls Studied by Ultrafast Infrared Spectroscopy, J. Phys. Chem., 1994, 98, 9396–9399.

    Article  CAS  Google Scholar 

  39. T. Lian, S. E. Bromberg, M. Asplund, H. Yang and C. B. Harris, Femtosecond Infrared Studies of the Dissociation and Dynamics of Transition Metal Carbonyls in Solution, J. Phys. Chem., 1996, 100, 11994–12001.

    Article  CAS  Google Scholar 

  40. J. B. Asbury, H. N. Ghosh, J. S. Yeston, R. G. Bergman and T. Lian, Sub-Picosecond IR Study of the Reactive Intermediate in an Alkane C-H Bond Activation Reaction by CpRh(CO)2, Organometallics, 1998, 17, 3417–3419.

    Article  CAS  Google Scholar 

  41. M. W. George and J. J. Turner, Excited states of transition metal complexes studied by time-resolved infrared spectroscopy, Coord. Chem. Rev., 1998, 177, 201–217.

    Article  CAS  Google Scholar 

  42. J. R. Schoonover, C. A. Bignozzi and T. J. Meyer, Application of transient vibrational spectroscopies to the excited states of metal polypyridyl complexes, Coord. Chem. Rev., 1997, 165, 239–266.

    Article  CAS  Google Scholar 

  43. D. C. Grills, J. J. Turner and M. W. George, Time-resolved infrared spectroscopy, Compr. Coord. Chem. II, 2004, 2, 91–101.

    CAS  Google Scholar 

  44. S. E. Page, A. Flood and K. C. Gordon, Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(i) complexes with bridged polypyridyl ligands, J. Chem. Soc., Dalton Trans., 2002, 1180–1187.

    Google Scholar 

  45. K. C. Gordon, A. K. Burrell, T. J. Simpson, S. E. Page, G. Kelso, M. I. J. Polson and A. Flood, Probing the nature of the redox products and lowest excited state of (bpy)2Ru(μ-bptz)Ru(bpy)24+: A resonance Raman study, Eur. J. Inorg. Chem., 2002, 554–563.

    Google Scholar 

  46. S. L. Howell, B. J. Matthewson, M. I. J. Polson, A. K. Burrell and K. C. Gordon, Structural Changes upon Reduction of Dipyrido[2,3-a:3′,2′-c]phenazine Probed by Vibrational Spectroscopy, ab Initio Calculations, and Deuteration Studies, Inorg. Chem., 2004, 43, 2876–2887.

    Article  CAS  PubMed  Google Scholar 

  47. M. K. Kuimova, W. Z. Alsindi, J. Dyer, D. C. Grills, O. S. Jina, P. Matousek, A. W. Parker, P. Portius, X. Z. Sun, M. Towrie, C. Wilson, J. Yang and M. W. George, Using picosecond and nanosecond time-resolved infrared spectroscopy for the investigation of excited states and reaction intermediates of inorganic systems, J. Chem. Soc., Dalton Trans., 2003, 3996–4006.

    Google Scholar 

  48. M. K. Kuimova, D. C. Grills, P. Matousek, A. W. Parker, X.-Z. Sun, M. Towrie and M. W. George, Picosecond time-resolved infrared investigation into the nature of the lowest excited state of fac-[Re(Cl)(CO)3(CO2Et-dppz)] (CO2Et-dppz = dipyrido[3,2a:2′,3′c]phenazine-11-carboxylic ethyl ester), Vib. Spectrosc., 2004, 35, 219–223.

    Article  CAS  Google Scholar 

  49. J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie and J. A. Weinstein, The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study, Photochem. Photobiol. Sci., 2003, 2, 542–554.

    Article  CAS  PubMed  Google Scholar 

  50. D. M. Dattelbaum, K. M. Omberg, J. R. Schoonover, R. L. Martin and T. J. Meyer, Application of Time-Resolved Infrared Spectroscopy to Electronic Structure in Metal-to-Ligand Charge-Transfer Excited States, Inorg. Chem., 2002, 41, 6071–6079.

    Article  CAS  PubMed  Google Scholar 

  51. D. M. Dattelbaum, R. L. Martin, J. R. Schoonover and T. J. Meyer, Molecular and Electronic Structure in the Metal-to-Ligand Charge Transfer Excited States of fac-[Re(4,4′-X2bpy)(CO)3(4-Etpy)]+ (X = CH3, H, CO2Et). Application of Density Functional Theory and Time-Resolved Infrared Spectroscopy, J. Phys. Chem. A, 2004, 108, 3518–3526.

    Article  CAS  Google Scholar 

  52. D. M. Dattelbaum, K. M. Omberg, P. J. Hay, N. L. Gebhart, R. L. Martin, J. R. Schoonover and T. J. Meyer, Defining Electronic Excited States Using Time-Resolved Infrared Spectroscopy and Density Functional Theory Calculations, J. Phys. Chem. A, 2004, 108, 3527–3536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keith C. Gordon or Michael W. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuimova, M.K., Gordon, K.C., Howell, S.L. et al. Picosecond time-resolved infrared spectroscopic investigation into electron localisation in the excited states of Re(i) polypyridyl complexes with bridging ligands. Photochem Photobiol Sci 5, 82–87 (2006). https://doi.org/10.1039/b508335d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b508335d

Navigation