Skip to main content
Log in

Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of the oxidation of Glycine (Gly), Alanine (Ala), Tyrosine (Tyr), Tryptophan (Trp) and some di-(Gly-Gly, Ala-Ala, Gly-Ala, Gly-Trp, Trp-Gly, Gly-Tyr, Tyr-Gly), tri-(Gly-Gly-Gly, Ala-Gly-Gly) and tetrapeptides (Gly-Gly-Gly-Gly) mediated by sulfate (SO4) and hydrogen phosphate (HPO4) radicals was studied, employing the flash-photolysis technique. The substrates were found to react with sulfate radicals (SO4, produced by photolysis of the S2O82−) faster than with hydrogen phosphate radicals (HPO4, generated by photolysis of P2O84− at pH = 7.1). The reactions of the zwitterions of the aliphatic amino acids and peptides with SO4 radicals take place by electron transfer from the carboxylate moiety to the inorganic radical, whereas those of the HPO4 proceed by H-abstraction from the α carbon atom. The phenoxyl radical of Tyr-Gly and Gly-Tyr are formed as intermediate species of the oxidation of these peptides by the inorganic radicals. The radical cations of Gly-Trp and Trp-Gly (at pH = 4.2) and their corresponding deprotonated forms (at pH = 7) were detected as intermediates species of the oxidation of these peptides with SO4 and HPO4. Reaction mechanisms which account for the observed intermediates are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Stadtman, Protein Oxidation in Aging and Age-Related Diseases, Ann. N. Y. Acad. Sci., 2001, 928, 22–38.

    Article  CAS  PubMed  Google Scholar 

  2. M. A. Korolainen, G. Goldsteins, I. Alafuzoff, J. Koistinaho and T. Pirttila, Proteomic analysis of protein oxidation in Alzheimer’s disease brain, Electrophoresis, 2002, 23, 3428–33.

    Article  CAS  PubMed  Google Scholar 

  3. J. W. Heinecke, Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis, Atherosclerosis, 1998, 141, 1–15

    Article  CAS  PubMed  Google Scholar 

  4. Atherosclerosis: gene expression, cell interactions and oxidation, ed. R. T. Dean and D. T. Kelly, Oxford University Press, Oxford, 2000, pp. 1–450

    Google Scholar 

  5. C. Suarna, R. T. Dean, J. May and R. Stocker, Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate, Arterioscler. Thromb. Vasc. Biol., 1995, 15, 1616–1624.

    Article  CAS  PubMed  Google Scholar 

  6. R. S. Schwartz, J. W. Madsen, A. C. Rybicki and R. L. Nagel, Oxidation of spectrin and deformability defects in diabetic erythrocytes, Diabetes, June, 1991.

    Google Scholar 

  7. J. Stubbe, W. van der Donk, Protein Radicals in Catalysis, Chem. Rev., 1998, 98, 705–762

    Article  CAS  PubMed  Google Scholar 

  8. C. W. Hoganson and G. T. Babcock, Science, 1997, 277, 1953

    Article  CAS  PubMed  Google Scholar 

  9. C. Aubert, M. H. Vos, P. Mathis, A. P. M. Eker and K. Brettel, Intraprotein Radical Transfer during Photoactivation of DNA Photolyase, Nature, 2000, 405, 586–589

    Article  CAS  PubMed  Google Scholar 

  10. G. T. Babcock, How oxygen is activated and reduced in respiration, Proc. Natl. Acad. Sci. USA, 1999, 96, 12971–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Stubbe, D. G. Nocera, C. S. Yee and M. C. Y. Chang, Radical Initiation in the Class I Ribonucleotide Reductase: Long-range Proton-coupled Electron Transfer?, Chem. Rev., 2003, 103, 2167–201

    Article  CAS  PubMed  Google Scholar 

  12. M. Sjódin, S. Styring, H. Wolpher, Y. Xu, L. Sun and L. Hammarström, Switching the Redox Mechanism: Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan, J. Am. Chem. Soc., 2005, 127, 3855–3863.

    Article  PubMed  CAS  Google Scholar 

  13. R. T. Deans, S. Fu, R. Stocker and M. J. Davies, Biochemistry and Pathology of Radical-mediated Protein Oxidation, Biochem. J., 1997, 324, 1–18

    Article  Google Scholar 

  14. M. J. Davies, The Oxidative Environment and Protein Damage, Biochim. Biophys. Acta, 2005, 1703, 93–109.

    Article  CAS  PubMed  Google Scholar 

  15. R. Nilsson, P. B. Merkel and D. R. Kears, Unambiguous Evidence for the Participation of Singlet Oxygen in Photodynamic Oxidation of Amino Acids, Photochem. Photobiol., 1972, 16, 117–124.

    Article  CAS  PubMed  Google Scholar 

  16. I. Fridovich, Free radicals in biology, ed. W. A. Pryor, Academic Press, New York, 1976, vol. II, p. 263.

  17. L. I. Grossweiner, Photochemical Inactivation of Enzymes, Curr. Top. Radical Res. Quart., 1976, 11, 141–199.

    CAS  Google Scholar 

  18. D. Becker, Y. Razskazovskii, M. U. Callaghan and M. D. Sevilla, Electron Spin Resonance of DNA Irradiated with a Heavy-ion Beam (16O8+): Evidence for Damage to Deoxyribose Phosphate Backbone, Radiat. Res., 1996, 146, 361–368.

    Article  CAS  PubMed  Google Scholar 

  19. P. Maruthamuthu and P. Neta, Phosphate Radicals. Spectra, Acid–base Equilibria and Reactions with Inorganic Compounds, J. Phys. Chem., 1978, 82, 710–713.

    Article  CAS  Google Scholar 

  20. D. O. Mártire and M. C. Gonzalez, Aqueous phase kinetic studies involving intermediates of environmental interest: Phosphate radicals and their reactions with substituted benzenes, Progress in Reaction Kinetics and Mechanism, 2001, 26, 201–218.

    Article  Google Scholar 

  21. A. B. Ross, W. G. Mallard, W. P. Helman, G. V. Buxton, R. E. Huie and P. Neta, NDRL-NIST Solution Kinetics Database:-Ver. 3.0, Notre Dame Radiation Laboratory, Notre Dame, IN and National Institute of Standards and Technology, Gaithersburg, MD, 1998; http://www.rcdc.nd.edu.

    Google Scholar 

  22. W. J. McElroy and S. J. Waygood, Kinetics of the Reactions of SO4, S2O82−, H2O and Fe2+, J. Chem. Soc., Faraday Trans., 1990, 86, 2557–2564

    Article  CAS  Google Scholar 

  23. S. C. Choure, M. M. M. Bamatraf, B. S. M. Rao, R. Das, H. Mohan and J. P. Mittal, Hydroxylation of Chlorotoluenes and Cresols: a Pulse-radiolysis, Laser Flash-Photolysis and Product Analysis Study, J. Phys. Chem. A, 1997, 101, 9837–9845.

    Article  CAS  Google Scholar 

  24. R. L. Lussier, W. M. Risen and J. O. Edwards, The Photochemistry of Peroxodiphosphates. The Oxidation of Water and Two Alcohols, J. Phys. Chem., 1970, 74, 4039–4046

    Article  Google Scholar 

  25. J. L. Faria, S. Steenken, Photochemistry of 2,3-dimethyl-2,3-diphenylbutane: C–C homolysis and protonation-induced side-chain fragmentation, J. Phys. Chem., 1992, 96, 10869–10874.

    Article  CAS  Google Scholar 

  26. J. A. Rosso, F. J. Rodríguez Nieto, M. C. Gonzalez and D. O. Mártire, Reactions of phosphate radicals with substituted benzenes, J. Photochem. A: Chem., 1998, 116, 21–25.

    Article  CAS  Google Scholar 

  27. Techniques of Chemistry, G. Porter and M. A. West, ed. G. Hames, Wiley Interscience, New York, 1974, vol. VI, Part II, ch. X

  28. J. F. Rabek, Experimental Methods in Photochemistry and Photophysics, Part I, John Wiley & Sons, Belfast, 1982, ch. 3.

    Google Scholar 

  29. M. L. Alegre, M. Geronés, J. A. Rosso, S. G. Bertolotti, A. M. Braun, D. O. Mártire and M. C. Gonzalez, Kinetic study of the reaction of chlorine atoms and Cl2 radicals anions in aqueous solutions. I. Reaction with benzene, J. Phys. Chem. A, 2000, 104, 3117–3125.

    Article  CAS  Google Scholar 

  30. S. Criado, J. M. Marioli, P. E. Allegretti, J. Furlong, F. J. Rodríguez Nieto, D. O. Mártire and N. A. García, Oxidation of di-and tri-peptides of Tyrosine and Valine mediated by singlet molecular oxygen, phosphate radicals and sulfate radicals, J. Photochem. Photobiol., B: Biol., 2001, 65, 74–84.

    Article  CAS  Google Scholar 

  31. G. L. Hug, Optical Spectra of Nonmetallic Inorganic Transient Species in Aqueous Solution, in, Nat. Stand. Ref. Data Ser., US Nat. Bur. Stand., 1981, 69.

  32. Handbook of Biochemistry and Molecular Biology, ed. G. D. Fasman, CRC Press, Cleveland, OH, 3rd edn, 1976, vol. I, p. 321.

    Google Scholar 

  33. E. D. Black, E. Hayon, Pulse radiolysis of phosphate anions H2PO4, HPO42−, PO43− and P2O74− in aqueous solutions, J. Phys. Chem., 1970, 74, 3199–3203.

    Article  CAS  Google Scholar 

  34. M. Simic, P. Neta and E. Hayon, Selectivity in the reactions of eaq and OH radicals with simple peptides in aqueous solution. Optical absorption spectra of intermediates, J. Am. Chem. Soc., 1970, 92, 4763–4768.

    Article  CAS  PubMed  Google Scholar 

  35. C. Hansch, A Leo and R. W. Taft, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  36. J. March, in Advanced Organic Chemistry, J. Willey and Sons, New York, 4th edn, 1991, p. 283

    Google Scholar 

  37. G. Merga, C. T. Aravindakumar, B. S. M. Rao, H. Mohan and J. P. Mittal, J. Chem. Soc., Faraday Trans., 1994, 90, 597–604.

    Article  CAS  Google Scholar 

  38. M. J. Davies, S. Fu and S. R. T. Dean, Protein Hydroperoxides Can Give Rise to Reactive Free Radicals, Biochem J., 1995, 305, 643–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Bonifačić, I. Štefanić, G. L. Hug, D. A. Armstrong and K. D. Asmus, Glycine Decarboxylation: The Free Radical Mechanism, J. Am. Chem. Soc., 1998, 120, 9930–9940.

    Article  Google Scholar 

  40. P. Maruthamuthu and H. Taniguchi, An in Situ Photolysis-electron Spin Resonance Study of Some Reactions of Phosphate Radicals, J. Phys. Chem., 1977, 81, 1944–1948.

    Article  CAS  Google Scholar 

  41. S. Solar, G. Getoff, P. S. Surdhar, D. A. Armstrong and A. Singh, Oxidation of Tryptophan and N-methylindole by N3•, Br2 and (SCN)2 Radicals in Light-and Heavy-water Solutions: A Pulse Radiolysis Study, J. Phys. Chem., 1991, 95, 3636–3643.

    Article  Google Scholar 

  42. M. L. Posener, G. E. Adams, R. B. Cundall and P. Wardman, Mechanism of Tryptophan Oxidation by Some Inorganic Radical-anions: A Pulse Radiolysis Study, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 2231–2239.

    Article  CAS  Google Scholar 

  43. W. T. Dixon, D. Murphy, Determination of the Acidity Constants of Some Phenol Radical Cations by Means of Electron Spin Resonance, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 1221–1230.

    Article  CAS  Google Scholar 

  44. R. V. Bensasson, E. J. Land and T. G. Truscott, Flash Photolysis and Pulse Radiolysis in Biology and Medicine: Contributions to the Chemistry of Biology and Medicine, Pergamon Press, New York, 1983.

    Google Scholar 

  45. J. L. Redpath and R. L. Willson, Chain Reactions and Radiosensitization: Model Enzyme Studies, Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med., 1975, 27, 389–398.

    Article  CAS  Google Scholar 

  46. I. A. Janković and L. R. Josimović, Autoxidation of Tryptophan in Aqueous Solutions, J. Serb. Chem. Soc., 2001, 66, 571–580.

    Article  Google Scholar 

  47. L. P. Candeias, P. Wardman and R. P. Mason, The Reaction of Oxygen with Radicals from Oxidation of Tryptophan and Indole-3-acetic Acid, Biophys. Chem., 1997, 67, 229–237.

    Article  CAS  PubMed  Google Scholar 

  48. Y. Deligiannakis and A. W. Rutherford, Electron Spin Echo Envelope Modulation Spectroscopy in Photosystem, Biochim. Biophys. Acta Bioenerg., 2001, 1507, 226–246

    Article  CAS  Google Scholar 

  49. C. Krebs, S. Chen, J. Baldwin, B. A. Ley, U. Patel, D. E. Edmondson, B. H. Huynh and J. M. Bollinger, Jr., Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit of Escherichia coli Ribonucleotide Reductase. 2. Evidence for and Consequences of Blocked Electron Transfer in the W48F Variant, J. Am. Chem. Soc., 2000, 122, 12207–12219

    Article  CAS  Google Scholar 

  50. G. Jones and L. N. Lu, Long-Lived Charge-Separated Species Observed on Flash Photolysis of Peptide Conjugates. Interplay of Local and Radical Ion Pair Triplet States, J. Org. Chem, 1998, 63, 8938–8945

    Article  CAS  Google Scholar 

  51. S. Pötsch, F. Lendzian, R. Ingemarson, A. Hörnberg, L. Thelander, W. Lubitz, G. Lassmann and A. Gräslund, The Iron-Oxygen Reconstitution Reaction in Protein R2-Tyr-177 Mutants of Mouse Ribonucleotide Reductase. EPR and Electron Nuclear Double Resonance Studies on a New Transient Tryptophan Radical, J. Biol. Chem., 1999, 274, 17696–17704.

    Article  PubMed  Google Scholar 

  52. J. A. Rosso, P. Caregnato, V. C. Mora, M. C. Gonzalez and D. O. Mártire, Reactions of Phosphate Radicals with Monosusbtituted Benzenes. A mechanistic investigation, Helv. Chim. Acta, 2003, 86, 2509–2524.

    Article  CAS  Google Scholar 

  53. E. J. Land and M. Ebert, Pulse Radiolysis Studies of Aqueous Phenol. Water Elimination from Dihydroxycyclohexadienyl Radicals to Form Phenoxyl, Trans. Faraday Soc., 1967, 63, 1181–1190.

    Article  CAS  Google Scholar 

  54. S. S. Cencione, M. C. Gonzalez and D. O. Mártire, Reactions of phosphate radicals with substituted benzenes. A Reactivity–Structure Correlation Study, J. Chem. Soc., Faraday Trans., 1998, 94, 2933–2937.

    Article  CAS  Google Scholar 

  55. J. A. Rosso, P. E. Allegretti, D. O. Mártire and M. C. Gonzalez, Reactions of sulfate and phosphate radicals with α,α,α-trifluorotoluene, J. Chem. Soc., Perkin Trans. 2, 1999, 205–210.

    Google Scholar 

  56. J. A. Rosso, S. Criado, S. G. Bertolotti, P. Allegretti, J. Furlong, N. A. García, M. C. Gonzalez and D. O. Mártire, Kinetic Study of the Reactions of Singlet Molecular Oxygen [O21Δg)] and Hydrogen Phosphate Radicals with Phenolic Derivatives of α, α, α-Trifluorotoluene, Photochem. Photobiol. Sci., 2003, 2, 882–887.

    Article  CAS  PubMed  Google Scholar 

  57. I. Pujols-Ayala, C. A. Sacksteder and B. A. Barry, Redox-Active Tyrosine Residues: Role for the Peptide Bond in Electron Transfer, J. Am. Chem. Soc., 2003, 125, 7536–538.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica C. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosio, G., Criado, S., Massad, W. et al. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan. Photochem Photobiol Sci 4, 840–846 (2005). https://doi.org/10.1039/b507856c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b507856c

Navigation