Skip to main content
Log in

Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Quenching of the monomer and excimer emissions from pyrene allows excellent discrimination in the detection of electron-deficient molecules; this characteristic could be used to detect explosives and for rapid screening of complex samples suspected of containing explosives. The method responds to electron deficient molecules other than nitro compounds (e.g., 1,4-dicyanobenzene), giving some false positives; in this case, however, the method is unlikely to lead to false negatives, a desirable characteristic in security-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Schoenfisch, Z. Huiping, M. C. Frost and M. E. Meyerhoff, Nitric Oxide-Releasing Fluorescence-Based Oxygen Sensing Polymeric Films, Anal. Chem., 2002, 74, 5937–5941.

    Article  CAS  Google Scholar 

  2. Y. He and L. Geng, In Situ Time-Resolved Fluorescence Spectroscopy in the Frequency Domain in Capillary Electrochromatography, Anal. Chem., 2002, 74, 1819–1823.

    Article  CAS  Google Scholar 

  3. J. Ji, N. Rosenzweig, I. Jones and Z. Rosenzweig, Molecular Oxygen-Sensitive Fluorescent Lipobeads for Intracellular Oxygen Measurements in Murine Macrophages, Anal. Chem., 2001, 73, 3521–3527.

    Article  CAS  Google Scholar 

  4. J. V. Goodpaster and V. L. McGuffin, Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives, Anal. Chem., 2001, 73, 2004–2011.

    Article  CAS  Google Scholar 

  5. J. B. Birks, D. J. Dyson and I. H. Munro, ‘Excimer’ Fluorescence Ii. Lifetime Studies of Pyrene Solutions, Proc. R. Soc. London, Ser. A, 1963, 275, 575–588.

    Article  CAS  Google Scholar 

  6. J. B. Birks and H. G. Seifert, Double-Photon Excitation of Excimer Fluorescence of Pyrene Solutions, Phys. Lett., 1965, 18, 127–128.

    Article  CAS  Google Scholar 

  7. J. B. Birks and A. J. H. Alwattar, Influence of Environment on the Radiative and Radiationless Transition Rates of the Pyrene Excimer, Chem. Phys. Lett., 1971, 11, 89–92.

    Article  CAS  Google Scholar 

  8. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, New York, 1970.

    Google Scholar 

  9. A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry; Blackwell, Oxford, 1991.

    Google Scholar 

  10. B. Stevens, Influence of Environment on the Radiative and Radiationless Transition Rates of the Pyrene Excimer, Adv. Photochem., 1971, 8, 161.

    CAS  Google Scholar 

  11. F. M. Winnik, Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media, Chem. Rev., 1993, 93, 587–614.

    Article  CAS  Google Scholar 

  12. J. Duhamel, M. A. Winnik, F. Baros, J. C. André and J. M. G. Martinho, Diffusion Effects on Pyrene Excimer Kinetics: Determination of the Excimer Formation Rate Coefficient Time Dependence, J. Phys. Chem., 1992, 96, 9805–9810.

    Article  CAS  Google Scholar 

  13. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn, Kluwer Academic, New York, 1999.

    Book  Google Scholar 

  14. J. V. Goodpaster, J. F. Harrison and V. L. McGuffin, Ab Initio Study of Selective Fluorescence Quenching of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. A, 2002, 106, 10645–10654.

    Article  CAS  Google Scholar 

  15. E. Sawicki, T. W. Stanley and W. C. Elbert, Quenchofluorometric Analysis for Fluoranthenic Hydrocarbons in the Presence of Other Types of Aromatic Hydrocarbon, Talanta, 1964, 11, 1433–1441.

    Article  Google Scholar 

  16. J. V. Goodpaster, S. B. Howerton and V. L. McGuffin, Forensic Analysis of Commercial Petroleum Products Using Selective Fluorescence Quenching, J. Forensic Sci., 2001, 46, 1358–1371.

    Article  CAS  Google Scholar 

  17. S. Pandey, K. A. Fletcher, J. R. Powell, M. E. R. McHale, A.-S. M. Kauppila, W. A. Acree, J. C. Fetzer, W. Dai and R. G. Harvey, Spectrochemical Investigations of Fluorescence Quenching Agents Part 5. Effect of Surfactants on the Ability of Nitromethane to Selectively Quench Fluorescence Emission of Alternants PAHs, Spectrochim. Acta, Part A, 1997, 53, 165–172.

    Google Scholar 

  18. S. B. Howerton, J. V. Goodpaster and V. L. McGuffin, Characterization of Polycyclic Aromatic Hydrocarbons in Environmental Samples by Selective Fluorescence Quenching, Anal. Chim. Acta, 2002, 459, 61–73.

    Article  CAS  Google Scholar 

  19. R. A. Caldwell, D. Creed, D. C. DeMarco, L. A. Melton, H. Ohta and P. H. Wine, Charge-Transfer Quenching of Singlet Excited Complexes, J. Am. Chem. Soc., 1980, 102, 2369–2377.

    Article  CAS  Google Scholar 

  20. O. Stern and M. Volmer, Uber Die Abklingzeit Der Fluoreszenz, Phys. Z., 1919, 20, 183–188.

    CAS  Google Scholar 

  21. Y. Barenholtz, T. Cohen, E. Haas and M. Ottolenghi, Lateral Organization of Pyrene-Labeled Lipids in Bilayers as Determined from the Deviation from Equilibrium between Pyrene Monomers and Excimers, J. Biol. Chem., 1996, 271, 3085–3090.

    Article  Google Scholar 

  22. C. A. Weisberg and M. L. Ellickson, Practical Modifications to US EPA Method 8330 for the Analysis of Explosives by High Performance Liquid Chromatography (Hplc), Am. Lab., 1998, 30, 32N–32V.

    CAS  Google Scholar 

  23. J. V. Goodpaster and V. L. McGuffin, Separation of Nitramine and Nitroaromatic Explosives by Capillary Liquid Chromatography, J. Liq. Chromatogr., 2001, 24, 1965–1978.

    Article  CAS  Google Scholar 

  24. J. C. Scaiano, Solvent Effects in the Photochemistry of Xanthone, J. Am. Chem. Soc., 1980, 102, 7747–7753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Scaiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Focsaneanu, KS., Scaiano, J.C. Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules. Photochem Photobiol Sci 4, 817–821 (2005). https://doi.org/10.1039/b505249a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b505249a

Navigation