Skip to main content
Log in

Production of fertile transgenic wheat plants by laser micropuncture

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A modified, non-damaging, protocol for the production of fertile transgenic wheat (Triticum aestivum L. cultivar Giza 164) plants by laser micropuncture was developed. The new homemade setup secures the transformation of as many as 60 immature embryo-derived calli (10000 cells each) in less than one hour using a UV excimer laser with two dimensional translation stages, a suitable computer program and a proper optical system. Five-day-old calli were irradiated by a focused laser microbeam to puncture momentarily made self-healing holes (∼0.5 µm) in the cell wall and membrane to allow uptake of the exogenous DNA. The plant expression vector pAB6 containing bar gene as a selectable marker for the herbicide bialaphos resistance and GUS (uidA) gene as a reporter gene was used for transformation. No selection pressure was conducted during the four-week callus induction period. Induced calli were transferred to a modified MS medium with 1 mg l−1 bialaphos for regeneration, followed by selection on 2 mg l−1 bialaphos for rooting. Three regenerated putative transgenic events were evaluated for the integration and stable expression of both genes and results indicated that this modified procedure of laser-mediated transformation can be successfully used in transforming wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Altpeter, I. Diaz, H. McAuslane, K. Gaddour, P. Carbonero and I. K. Vasil, Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe, Mol. Breed., 1999, 5, 53–63.

    Article  CAS  Google Scholar 

  2. F. Altpeter, V. Vasil, V. Srivastava, E. Stöger and I. K. Vasil, Accelerated production of transgenic wheat (Triticum aestivum L.), Plant Cell Rep., 1996, 16, 12–17.

    Article  CAS  Google Scholar 

  3. M. Bliffeld, J. Mundy, I. Potrykus and J. Fütterer, Genetic engineering of wheat for increased resistance to powdery mildew disease, Theor. Appl. Genet., 1999, 98, 1079–1086.

    Article  CAS  Google Scholar 

  4. W. P. Chen, X. Gu, G. H. Liang, S. Muthukrishnan, P. D. Chen, D. J. Liu and B. S. Gill, Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker, Theor. Appl. Genet., 1998, 97, 1296–1306.

    Article  CAS  Google Scholar 

  5. M. Cheng, J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner and Y. Wan, Genetic transformation of wheat mediated by Agrobacterium tumefaciens, Plant Physiol., 1997, 115, 971–980.

    Article  CAS  Google Scholar 

  6. L. Folling and A. Olesen, Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment, Plant Cell Rep., 2001, 20, 629–636.

    Article  CAS  Google Scholar 

  7. D. G. He, A. Mouradov, Y. M. Yang, E. Mouradova and K. J. Scott, Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts, Plant Cell Rep., 1994, 14, 192–196.

    CAS  PubMed  Google Scholar 

  8. J. Hess and J. Carman, Competence of immature wheat embryos: genotype, donor plant environment and endogenous hormone levels, Crop Sci., 1998, 38, 249–253.

    Article  CAS  Google Scholar 

  9. M. Iser, S. Fettig, F. Scheyhing, K. Viertel and D. Hess, Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential, J. Plant Physiol., 1999, 154, 509–516.

    Article  CAS  Google Scholar 

  10. B. Li, N. Leung, K. Caswell and R. N. Chibbar, Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis efficiencies by the bombardment of isolated scutella, In Vitro Cell. Dev. Biol. - Plant, 2003, 39, 12–19.

    Article  Google Scholar 

  11. S. Rasco-Gaunt, A. Riley, M. Cannell, P. A. Lazzeri and P. Barcelo, Procedures allowing the transformation of a range of European elite wheat varieties via particle bombardment, J. Exp. Bot., 2000, 52, 865–874.

    Article  Google Scholar 

  12. A. P. Sorokin, X.-Y. Ke, D.-F. Chen and M. C. Elliot, Production of fertile wheat plants via tissue electroporation, Plant Sci., 2000, 156, 227–233.

    Article  CAS  Google Scholar 

  13. J. T. Weeks, O. D. Anderson and A. E. Blechl, Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.), Plant Physiol., 1993, 102, 1077–1084.

    Article  CAS  Google Scholar 

  14. B. Witrzens, R. I. S. Brettell, F. R. Murray, D. McElroy, Z. Li and E. S. Dennis, Comparison of three selectable marker genes for transformation of wheat by particle bombardment, Aust. J. Plant Physiol., 1998, 25, 39–44.

    CAS  Google Scholar 

  15. W. Tao, J. Wilkinson, E. J. Stanbridge and M. W. Berns, Direct gene tranfer into human cultured cells facilitated by laser micropuncture of the cell membrane, Proc. Natl. Acad. Sci. USA, 1987, 84, 4180–4184.

    Article  CAS  Google Scholar 

  16. Y. Guo, H. Liang and M. B. Berns, Laser-mediated gene transfer in rice, Physiol. Plant, 1995, 93, 19–24.

    Article  CAS  Google Scholar 

  17. E. Sivamani, A. Bahieldin, J. M. Wraith, T. Al-Niemi, W. E. Dyer, T. D. Ho and R. Qu, Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene, Plant Sci., 2000, 155, 1–9.

    Article  CAS  Google Scholar 

  18. D. McElroy, A. D. Blowers, B. Jenes and R. Wu, Construction of expression vector based on the rice actin1 (Act 1) 5′ region for use in monocot transformation, Mol. Gen. Genet., 1991, 231, 150–160.

    Article  CAS  Google Scholar 

  19. T. Murashige and F. Skoog, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, 15, 473–497.

    Article  CAS  Google Scholar 

  20. A. Bahieldin, H. F. Eissa, H. T. Mahfouz, W. E. Dyer, M. A. Madkour and R. Qu, Evidence for non-proteinaceous inhibitor(s) of beta-glucuronidase in wheat (Triticum aestivum L.) leaf and root tissues, Plant Cell, Tissue Organ Cult., 2005, 82, 11–17.

    Article  CAS  Google Scholar 

  21. C. W. Snedecor and W. G. Cochran, Statistical Methods, Iowa State University Press, Ames, IA, 6th edn., 1969.

    Google Scholar 

  22. R. A. Jefferson, T. A. Kavanagh and M. W. Bevan, GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plant, EMBO J., 1987, 6, 3901–3907.

    Article  CAS  Google Scholar 

  23. S. L. Dellaporta, J. Wood and J. B. Hicks, A plant DNA minipreparation: Version II, Plant Mol. Biol. Rep., 1983, 4, 19–21.

    Article  Google Scholar 

  24. J. D. Hamill, S. Rounsley, A. Spencer, G. Todd and M. J. C. Rhodes, The use of the polymerase chain reaction in plant transformation studies, Plant Cell Rep., 1991, 10, 221–224.

    Article  CAS  Google Scholar 

  25. Z. Y. Wang, E. A. MacRae, M. A. Wright, K. M. Bolitho, G. S. Ross and R. G. Atkinson, Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production, Plant Mol. Biol., 2000, 42, 317–328.

    Article  CAS  Google Scholar 

  26. K. Lindsey and P. Gallois, Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens, J. Exp. Bot., 1990, 41, 529–536.

    Article  CAS  Google Scholar 

  27. Z. Chen, L. Wang, H. Lan, L. Zhang, B. Dang and Y. Tian, Obtaining new sclerotia-resistant lines of rape by genetic engineering, Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 1999, The Regional Institute Limited, Gosford NSW 2250, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. A. Badr or A. Bahieldin.

Additional information

† Principal authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badr, Y.A., Kereim, M.A., Yehia, M.A. et al. Production of fertile transgenic wheat plants by laser micropuncture. Photochem Photobiol Sci 4, 803–807 (2005). https://doi.org/10.1039/b503658e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b503658e

Navigation