Skip to main content
Log in

Donor-substituted phenyl-π-chromones: electrochemiluminescence and intriguing electronic properties

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phenylethynylchromones bearing different donor groups at the phenyl moiety have been prepared and their photophysical and electrogenerated chemiluminescence (ECL) properties have been studied with respect to their structural features. Intriguingly, the presence and variation of donor groups do not much influence the absorption spectra, which can be compared with the spectrum of unsubstituted chromone, whereas the photoluminescence (PL) spectra show pronounced changes. Density functional theory (DFT) calculations indicate enhancement of HOMO energy levels upon increasing the donor strength. The photophysical properties have also been studied in various solvents, and the PL spectra in particular show the anticipated trend. The introduction of p-extension imparts ECL to the new molecules and the electronic coupling between the donor and the acceptor moieties through C—C triple bond influences ECL emission maxima. Weaker donors impart excimer ECL while stronger donors impart monomeric intramolecular charge transfer (ICT) ECL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Ellis, Chromenes, Chromanones and Chromones, John Wiley and Sons, New York, 1977, p. 1 ff.

    Book  Google Scholar 

  2. J. Staunton, in Comprehensive Organic Chemistry, ed. D. Barton and W. D. Ollis, Pergamon Press, Oxford, vol. 4, 1974, p. 659 ff.

  3. H. Miao, and Z. Yang, Regiospecific Carbonylative Annulation of Iodophenol Acetates and Acetylenes To Construct the Flavones by a New Catalyst of Palladium-Thiourea-dppp Complex, Org. Lett., 2000, 2, 1765. and references therein

    Article  CAS  Google Scholar 

  4. M. Hadjeri, M. Barbier, X. Ronot, A.-M. Mariotte, A. Boumendjel, and J. Boutonnat, Modulation of P-Glycoprotein-Mediated Multidrug Resistance by Flavonoid Derivatives and Analogues, J. Med. Chem., 2003, 46, 2125. and references therein

    Article  CAS  Google Scholar 

  5. S. Rajadurai, and P. K. Das, Reactivity and photophysical behavior of chromone triplet. A laser flash photolysis study, Can. J. Chem., 1987, 65, 2277.

    Article  CAS  Google Scholar 

  6. R. S. Becker, S. Chakravorti, C. A. Gartner, M. de Graca, Miguel, Photosensitizers: comprehensive photophysics/photochemistry and theory of coumarins, chromones, their homologs and thione analogs, J. Chem. Soc., Faraday Trans., 1993, 89, 1007.

    Article  CAS  Google Scholar 

  7. J. M. Kauffman, and M. A. Aziz, Syntheses and photophysical properties of fluorescent 2-aryl-3-hydroxy-4-chromenones, J. Heterocycl. Chem., 1993, 30, 1549.

    Article  CAS  Google Scholar 

  8. A. K. Jen, Y. Liu, L. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. R. Dalton, Synthesis and characterization of highly efficient, chemically, and thermally stable chromophores with chromone-containing electron acceptors for NLO applications, Adv. Mater., 1999, 11, 452.

    Article  CAS  Google Scholar 

  9. M. Haller, J. Luo, H. Li, T.-D. Kim, Y. Liao, B. H. Robinson, L. R. Dalton, and A. K. Jen, A Novel Lattice-Hardening Process To Achieve Highly Efficient and Thermally Stable Nonlinear Optical Polymers, Macromolecules, 2004, 37, 688. and references therein

    Article  CAS  Google Scholar 

  10. M. M. Richter, Electrogenerated Chemiluminescence, Chem. Rev., 2004, 104, 3003.

    Article  CAS  Google Scholar 

  11. L. R. Faulkner and A. J. Bard, Electrogenerated Chemiluminescence in Electrochemical Methods, John Wiley & Sons, New York, 1980, pp. 621–627.

    Google Scholar 

  12. L. R. Faulkner and A. J. Bard, Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1977, vol. 10, pp. 1–95.

  13. A. W. Knight, and G. M. Greenway, Occurrence, Mechanisms and Analytical Applications of Electrogenerated Chemiluminescence, Analyst, 1994, 119, 879.

    Article  CAS  Google Scholar 

  14. A. W. Knight, A review of recent trends in analytical applications of electrogenerated chemiluminescence, Trends Anal. Chem., 1999, 18, 47.

    Article  CAS  Google Scholar 

  15. R. Y. Lai, E. F. Fabrizio, S. A. Jenekhe, and A. J. Bard, Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New Donor–Acceptor Molecule: 3,7-[Bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine, J. Am. Chem. Soc, 2001, 123, 9112.

    Article  CAS  Google Scholar 

  16. I. Prieto, J. Teetsov, M. A. Fox, D. A. Vanden Bout, and A. J. Bard, A Study of Excimer Emission in Solutions of Poly(9,9-dioctylfluorene) Using Electrogenerated Chemiluminescence, J. Phys. Chem. A, 2001, 105, 520.

    Article  CAS  Google Scholar 

  17. M. Oyama, and S. Okazaki, Development of a Dual-Electrolysis Stopped-Flow Method for the Observation of Electrogenerated Chemiluminescence in Energy-Sufficient Systems, Anal. Chem., 1998, 70, 5079.

    Article  CAS  Google Scholar 

  18. A. Kapturkievicz, Electrochemical generation of the excited TICT states Part II. Effect of the supporting electrolyte, J. Electroanal. Chem. Interfacial Electrochem., 1990, 290, 135.

    Article  Google Scholar 

  19. A. Kapturkievicz, Electrochemical generation of the excited TICT states Part III. Aryl derivatives of N,N-dimethylaniline, J. Electroanal. Chem. Interfacial Electrochem., 1991, 302, 131.

    Article  Google Scholar 

  20. F.-C. Chen, J.-H. Ho, C.-Y. Chen, Y. O. Su, T.-I. Ho, Electrogenerated chemiluminescence of sterically hindered porphyrins in aqueous media, J. Electroanal. Chem., 2001, 499, 17.

    Article  CAS  Google Scholar 

  21. C.-Y. Chen, J.-H. Ho, S.-L. Wang, T.-I. Ho, Excimer and intramolecular charge transfer chemiluminescence from electrogenerated ion radicals of donor–acceptor stilbenoids, Photochem. Photobiol. Sci, 2003, 2, 1232.

    Article  CAS  Google Scholar 

  22. A. Elangovan, T.-Y. Chen, C.-Y. Chen, T.-I. Ho, First synthesis and electrogenerated chemiluminescence of novel p-substituted phenyl-2-quinolinylethynes, Chem. Commun., 2003, 2146.

    Google Scholar 

  23. A. Elangovan, S.-W. Yang, J.-H. Lin, K.-M. Kao, T.-I. Ho, Synthesis and electrogenerated chemiluminescence of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: effect of positional isomerism, Org. Biomol. Chem., 2004, 2, 1597.

    Article  CAS  Google Scholar 

  24. J. Heinze, and J. Schwart, Activation parameters in the reductive dehalogenation of anthracene halides, J. Electroanal. Chem. Interfacial Electrochem., 1981, 126, 283.

    Article  CAS  Google Scholar 

  25. L. R. Faulkner, and A. J. Bard, Electrogenerated chemiluminescence. I. Mechanism of anthracene chemiluminescence in N,N-dimethylformamide solution, J. Am. Chem. Soc., 1968, 90, 6284.

    Article  CAS  Google Scholar 

  26. D. M. Hercules, Chemiluminescence from Electron-Transfer Reactions, Acc. Chem. Res., 1969, 2, 301.

    Article  CAS  Google Scholar 

  27. R. E. Visco, and E. A. Chandross, Electroluminescence in solutions of aromatic hydrocarbons, J. Am. Chem. Soc, 1964, 86, 5350.

    Article  CAS  Google Scholar 

  28. K. S. V. Santhanam, and A. J. Bard, Chemiluminescence of Electrogenerated 9,10-Diphenylanthracene Anion Radical, J. Am. Chem. Soc., 1965, 87, 139.

    Article  CAS  Google Scholar 

  29. D. M. Hercules, Chemiluminescence Resulting from Electrochemically generated Species, Science, 1964, 145, 808.

    Article  CAS  Google Scholar 

  30. L. R. Faulkner, H. Tachikawa, A. J. Bard J. Am. Chem. Soc, 1972, 94, 691.

    Article  CAS  Google Scholar 

  31. T.-I. Ho, A. Elangovan, H.-Y. Hsu and S.-W. Yang, Highly Fluorescent N,N-Dimethylaminophenylethynylarenes: Synthesis, Photophysical Properties and Electrochemiluminescence, submitted.

  32. K. Watanabe and S. Saitama, Preparation of chromone derivatives as matrix metalloproteinase inhibitors, Eur. Pat., 1996, 758649.

    Google Scholar 

  33. A. Elangovan, Y.-H. Wang, T.-I. Ho, Sonogashira Coupling Reaction with Diminished Homocoupling, Org. Lett., 2003, 5, 1841.

    Article  CAS  Google Scholar 

  34. K. Sonogashira, Y. Tohda, and N. Hagihara, Convenient synthesis of acetylenes. Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, and bromopyridines, Tetrahedron Lett., 1975, 16, 4467.

    Article  Google Scholar 

  35. K. Takahashi, Y. Kuroyama, K. Sonogashira, and N. Hagihara, A convenient synthesis of ethynylarenes and diethynylarenes, Synthesis, 1980, 627.

    Google Scholar 

  36. C. R. Moylan, R. D. Millar, R. J. Twieg, K. M. Betterton, V. Y. Lee, T. J. Matray, and C. Nguyen, Synthesis and nonlinear optical properties of donor–acceptor substituted triaryl azole derivatives, Chem. Mater., 1993, 5, 1499.

    Article  CAS  Google Scholar 

  37. A. F. Olea, D. R. Worrall, and F. Wilkinson, Variations in efficiencies of triplet state and exciplex formation following fluorescence quenching of 9,10-dicyanoanthracene due to charge transfer interactions, Photochem. Photobiol. Sci., 2003, 2, 212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Ing Ho.

Additional information

Electronic supplementary information (ESI) available: Characterization data, UV-visible absorption and fluorescence emission spectra of 1–5 in various solvents, CV curves for 1–5 and X-ray data for 4. See http://www.rsc.org/suppdata/pp/b4/b416319b/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SW., Elangovan, A. & Ho, TI. Donor-substituted phenyl-π-chromones: electrochemiluminescence and intriguing electronic properties. Photochem Photobiol Sci 4, 327–332 (2005). https://doi.org/10.1039/b416319b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b416319b

Navigation