Skip to main content
Log in

Catechin and hydroxybenzhydrols as models for the environmental photochemistry of tannins and lignins

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemistry of several model plant-derived compounds has been studied in aqueous solution. In particular, the reactions of catechin as a model tannin and methoxy-substituted hydroxybenzhydrols as model lignin functionalities were investigated. Tannins and lignins constitute a significant portion of the humic substances in aquatic systems, which are themselves the main component of dissolved organic matter thought to be responsible for the absorption and attenuation of light in these environments. Catechin (1) was found to undergo a reversible photoisomerization reaction to give epicatechin (2). Such a reaction is an explicit example of a photon absorbing process that enables catechin (1) and its derivatives to act as natural sunscreens by attenuating light energy through non-destructive reactions. The methoxy-substituted hydroxybenzhydrols were found to undergo photosolvolysis reactions via efficient generation of quinone methide intermediates. The intermediate quinone methides were observed to be longer lived, and thus more stable, than previously studied hydroxybenzhydrol derivatives. The meta-hydroxybenzhydrol isomer (5) was found to undergo additional chemistry leading to the production of a ring-closed fluorene from the quinone methide intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pienitz and W. F. Vincent, Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes, Nature, 2000, 404, 484–487.

    Article  CAS  PubMed  Google Scholar 

  2. P. Schmitt-Kopplin, N. Hertkorn, H. R. Schulten and A. Kettrup, Structural changes in a dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere, Environ. Sci. Technol., 1998, 32, 2531–2541.

    Article  CAS  Google Scholar 

  3. H. Gao and R. G. Zepp, Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States, Environ. Sci. Technol., 1998, 32, 2940–2946.

    Article  CAS  Google Scholar 

  4. R. M. W. Amon and R. Benner, Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system, Geochim. Cosmochim. Acta, 1996, 60, 1783–1792.

    Article  CAS  Google Scholar 

  5. W. Granéli, M. Lindell, B. M. de Faria and F. de Assis Esteves, Photoproduction of dissolved inorganic carbon in temperate and tropical lakes — dependence on wavelength band and dissolved organic carbon concentration, Biogeochemistry, 1998, 43, 175–195.

    Article  Google Scholar 

  6. I. Reche, M. L. Pace and J. J. Cole, Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems, Biogeochemistry, 1999, 44, 259–280.

    Google Scholar 

  7. C. L. Osburn, D. P. Morris, K. A. Thorn and R. E. Moeller, Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation, Biogeochemistry, 2001, 54, 251–278.

    Article  CAS  Google Scholar 

  8. E. Engelhaupt, T. S. Bianchi, R. G. Wetzel and M. A. Tarr, Photochemical transformations and bacterial utilization of high-molecular-weight dissolved organic carbon in a southern Louisiana tidal stream (Bayou Trepagnier), Biogeochemistry, 2002, 62, 39–58.

    Article  Google Scholar 

  9. R. G. Zepp, P. F. Schlotzhauer and R. M. Sink, Photosensitized transformations involving electronic energy transfer in natural waters, Environ. Sci. Technol., 1985, 19, 74–81.

    Article  Google Scholar 

  10. G. G. Choudhry, Photophysical and photochemical properties of soil and aquatic humic materials, Residue Rev., 1984, 92, 59–111.

    CAS  Google Scholar 

  11. F. H. Frimmel, H. Bauer, J. Putzien, P. Murasecco and A. M. Braun, Laser flash-photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen, Environ. Sci. Technol., 1987, 21, 541–545.

    Article  CAS  PubMed  Google Scholar 

  12. F. H. Frimmel, Photochemical aspects related to humic substances, Environ. Int., 1994, 20, 373–385.

    Article  CAS  Google Scholar 

  13. P. Hapiot, J. Pinson, P. Neta, C. Francesch, F. Mhamdi, C. Rolando and S. Schneider, Mechanism of oxidative coupling of coniferyl alcohol, Phytochemistry, 1994, 36, 1013–1020.

    Article  CAS  Google Scholar 

  14. I. Kögel-Knabner, The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter, Soil Biol. Biochem., 2002, 34, 139–162.

    Article  Google Scholar 

  15. K. Lorenz, C. M. Preston, S. Raspe, I. K. Morrison and K. H. Feger, Litter decompostion and humus characteristics in Canadian and German spruce ecosystems: Information from tannin analysis and C-13 CPMAS NMR, Soil Biol. Biochem., 2000, 32, 779–792.

    Article  CAS  Google Scholar 

  16. C. M. Preston, J. A. Trofymow, B. G. Sayer and J. Niu, 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies, Can. J. Bot., 1997, 75, 1601–1613.

    Article  CAS  Google Scholar 

  17. C. M. Preston, in Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, ed. G. G. Gross, R. W. Hemingway, T. Yoshida and S. J. Branham, Kluwer Academic, New York, 1999, p. 825.

  18. T. E. C. Kraus, Z. Yu, C. M. Preston, R. A. Dahlgren and R. J. Zasoski, Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins, J. Chem. Ecol., 2003, 29, 703–730.

    Article  CAS  PubMed  Google Scholar 

  19. P. J. Hernes, R. Benner, G. L. Cowie, M. A. Goñi, B. A. Bergamaschi and J. I. Hedges, Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach, Geochim. Cosmochim. Acta, 2001, 65, 3109–3122.

    Article  CAS  Google Scholar 

  20. A. C. Stenson, A. G. Marshall and W. T. Cooper, Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra, Anal. Chem., 2003, 75, 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  21. W. Bors, W. Heller, C. Michel and M. Saran, Flavonoids as antioxidants — determination of radical-scavenging efficiencies, Methods Enzymol., 1990, 186, 343–355.

    Article  CAS  PubMed  Google Scholar 

  22. D. C. Chu and L. R. Juneja, in Chemistry and Applications of Green Tea, ed. T. Yamamoto, L. R. Juneja, D. C. Chu and M. K. Kim, CRC Press, Boca Raton, FL, 1997, p. 13.

  23. O. Dangles, G. Fargeix and C. Dufour, Antioxidant properties of anthocyanins and tannins: A mechanistic investigation with catechin and the 3′,4′,7-trihydroxyflavylium ion, J. Chem. Soc., Perkin Trans. 2, 2000, 1653–1663.

    Google Scholar 

  24. P. G. Pietta, Flavonoids as antioxidants, J. Nat. Prod., 2000, 63, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  25. C. T. Saucier and A. L. Waterhouse, Synergetic activity of catechin and other antioxidants, J. Agr. Food Chem., 1999, 47, 4491–4494.

    Article  CAS  Google Scholar 

  26. P. Wan and B. Chak, Structure reactivity studies and catalytic effects in the photosolvolysis of methoxy-substituted benzyl alcohols, J. Chem. Soc., Perkin Trans. 2, 1986, 1751–1756.

    Google Scholar 

  27. L. Diao, C. Yang and P. Wan, Quinone methide intermediates from the photolysis of hydroxybenzyl alcohols in aqueous solution, J. Am. Chem. Soc., 1995, 117, 5369–5370.

    Article  CAS  Google Scholar 

  28. B. Barker, L. Diao and P. Wan, Intramolecular [4+2] cycloaddition of a photogenerated o-quinone methide in aqueous solution, J. Photochem. Photobiol. A, 1996, 104, 91–96.

    Article  Google Scholar 

  29. H. C. Longuet-Higgins, Photogenerated quonine methides in aqueous solution, J. Chem. Phys., 1950, 18, 265.

    Article  CAS  Google Scholar 

  30. R. C. Weast, CRC Handbook of Chemistry and Physics, 62nd edn., CRC Press, Boca Raton, FL, 1981.

    Google Scholar 

  31. L. Jurd, Anthocyanidins and related compounds, Tetrahedron, 1969, 25, 2367–2380.

    Article  CAS  PubMed  Google Scholar 

  32. I. Vovk, B. Simonovska, P. Vuorela and H. Vuorela, Optimization of separation of catechin and epicatechin on cellulose TLC plates, J. Planar Chromatogr., 2002, 15, 433–436.

    Article  CAS  Google Scholar 

  33. D. A. Bolon, o-Quinone methides. II. Trapping with production of chromans, J. Org. Chem., 1970, 35, 3666–3670.

    Article  CAS  Google Scholar 

  34. A. Arduini, A. Bosi, A. Pochini and R. Ungaro, o-quinone methides 2. Stereoselectivity in cycloaddition reactions of o-quinone methides with vinyl ethers, Tetrahedron, 1985, 41, 3095–3103.

    Article  CAS  Google Scholar 

  35. D. F. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem., 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  36. C. Cren-Olivé, P. Hapiot, J. Pinson and C. Rolando, Free radical chemistry of flavan-3-ols: Determination of thermodynamic parameters and of kinetic reactivity from short (ns) to long (ms) time scale, J. Am. Chem. Soc., 2002, 124, 14027–14038.

    Article  PubMed  CAS  Google Scholar 

  37. C. Cren-Olivé, S. Lebrun and C. Rolando, An efficient synthesis of the four mono methylated isomers of (+)-catechin including the major metabolites and of some dimethylated and trimethylated analogues through selective protection of the catechol ring, J. Chem. Soc., Perkin Trans. 1, 2002, 821–830.

    Google Scholar 

  38. S. V. Jovanovic, Y. Hara, S. Steenken and M. G. Simic, Antioxidant potential of gallocatechins — a pulse-radiolysis and laser photolysis study, J. Am. Chem. Soc., 1995, 117, 9881–9888.

    Article  CAS  Google Scholar 

  39. D. E. Hathway and J. W. T. Seakins, Autoxidation of catechin, Nature, 1955, 176, 218.

    Article  Google Scholar 

  40. P. Kiatgrajai, J. D. Wellons, L. Gollob and J. D. White, Kinetics of epimerization of catechin, J. Org. Chem., 1982, 47, 2910–2912.

    Article  CAS  Google Scholar 

  41. W. Peng, A. H. Conner and R. W. Hemingway, Phenolation of (+)-catechin with mineral acids, J. Wood Chem. Technol., 1997, 17, 341–360.

    Article  CAS  Google Scholar 

  42. K. Akimoto and I. Sugimoto, Stability of (+)-cyanidanol-3 in aqueous solution, Chem. Pharm. Bull., 1981, 29, 2005–2011.

    Article  CAS  Google Scholar 

  43. K. Akimoto, K. Inoue and I. Sugimoto, Photo-stability of several crystal forms of cianidanol, Chem. Pharm. Bull., 1985, 33, 4050–4053.

    Article  CAS  Google Scholar 

  44. H. E. Zimmerman and V. R. Sandel, Mechanistic Organic Photochemistry II. Solvolytic Photochemical Reactions, J. Am. Chem. Soc., 1963, 85, 915–922.

    Article  CAS  Google Scholar 

  45. R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait and S. Steenken, Flash-photolysis generation and reactivities of triarylmethyl and diarylmethyl cations in aqueous solutions, J. Am. Chem. Soc., 1989, 111, 3966–3972.

    Article  CAS  Google Scholar 

  46. R. A. McClelland, N. Mathivanan and S. Steenken, Laser flash-photolysis of 9-fluorenol — production and reactivities of the 9-fluorenol radical cation and the 9-fluorenyl cation, J. Am. Chem. Soc., 1990, 112, 4857–4861.

    Article  CAS  Google Scholar 

  47. L. Diao, PhD Thesis, Photogeneration and chemistry of quinone methides from hydroxybenzyl alcohols, University of Victoria, 1998.

    Google Scholar 

  48. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, New York, 2nd edn., 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, K., Wan, P. & Preston, C.M. Catechin and hydroxybenzhydrols as models for the environmental photochemistry of tannins and lignins. Photochem Photobiol Sci 3, 463–472 (2004). https://doi.org/10.1039/b402241f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b402241f

Navigation