Skip to main content
Log in

Multiple photostabilization actions of heartwood extract from Acacia confusa

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Compared to toxic and carcinogenic synthetic photostabilizers, application of plant phenolics as natural photostabilizers is more environmentally friendly. Previous works demonstrated the heartwood extract (HWE) of Acacia confusa has the potential to be a natural wood photostabilizer. However, its exact photostabilities and wood photoprotection abilities are not fully understood. This study aimed to illustrate the photostabilities of the HWE on wood and to recognize the effective components in HWE. The results obtained from the wood photoprotection test and photostability analyses revealed that HWE and its fractions possessed wood photoprotection abilities to retard lignin photodegradation, especially HWE and its EtOAc fraction, due to the abundant catecholic flavonoids endowing the multiple photostabilities, including UVA absorptivity, singlet oxygen quenching ability and phenoxyl radical scavenging efficacy. In addition, the photostability-guided isolation method was successively established for investigating the multiple photostabilization actions of HWE. Accordingly, this method can be applied as the standard procedure for isolating photostabilizers from plant secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afaq F, Mukhtar H (2011) Botanical antioxidants for skin protection: an overview. In: Krutmann J, Humbert P (eds) Nutrition for healthy skin. Springer, Berlin, pp 51–63

    Google Scholar 

  • Ahlström L, Eskilsson CS, Björklund E (2005) Determination of banned azo dyes in consumer goods. Trends Analyt Chem 24(1):49–56

    Article  Google Scholar 

  • Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  PubMed  Google Scholar 

  • Andrady AL, Hamid H, Torikai A (2011) Effects of solar UV and climate change on materials. Photochem Photobiol Sci 10:292–300

    Article  CAS  PubMed  Google Scholar 

  • Andrady AL, Torikai A, Redhwi HH, Pandey KK, Gies P (2015) Consequences of stratospheric ozone depletion and climate change on the use of materials. Photochem Photobiol Sci 14:170–184

    Article  CAS  PubMed  Google Scholar 

  • Bonini C, D’Auria M, D’Alessio L, Mauriello G, Tofani D, Viggiano D, Zimbardi F (1998) Singlet oxygen degradation of lignin. J Photochem Photobiol A 113(2):119–124

    Article  CAS  Google Scholar 

  • Bridson JH, Kaur J, Zhang Zh, Donaldson L, Fernyhough A (2015) Polymeric flavonoids processed with co-polymers as UV and thermal stabilisers for polyethylene films. Polym Degrad Stab 122:18–24

    Article  CAS  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23(12):1373–1380

    Article  CAS  Google Scholar 

  • Chang ST (1985) Effect of light wavelength on the degradation of wood. Forestry Prod Ind 4:118–123 (In Chinese)

    Google Scholar 

  • Chang ST, Hon DNS, Feist WC (1982) Photodegradation and photoprotection of wood surface. Wood Fiber Sci 14(2):104–117

    CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Chang ST (2010a) Influences of extractives on the photodegradation of wood. Polym Degrad Stab 95:516–521

    Article  CAS  Google Scholar 

  • Chang TC, Chang HT, Wu CL, Lin HY, Chang ST (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym Degrad Stab 95:1518–1522

    Article  CAS  Google Scholar 

  • Chang TC, Lin HY, Wang SY, Chang ST (2014) Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polym Degrad Stab 105:42–47

    Article  CAS  Google Scholar 

  • Chang TC, Hsiao NC, Yu PC, Chang ST (2015) Exploitation of Acacia confusa heartwood extract as natural photostabilizers. Wood Sci Technol 49(4):811–823

    Article  CAS  Google Scholar 

  • Chaochanchaikul K, Sombatsompop N (2011) Stabilizations of molecular structures and mechanical properties of PVC and wood/PVC composites by Tinuvin and TiO2 stabilizers. Polym Eng Sci 51(7):1354–1365

    Article  CAS  Google Scholar 

  • Chaochanchaikul K, Rosarpitak V, Sombatsompop N (2013) Photodegradation profiles of PVC compound and wood/PVC composites under UV weathering. Express Polym Lett 7(2):146–460

    Article  CAS  Google Scholar 

  • Chou PL, Chang HT, Yeh TF, Chang ST (2008) Characterizing the conservation effect of clear coatings on photodegradation of wood. Bioresour Technol 99:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Crestini C, D’Auria M (1997) Singlet oxygen in the photodegradation of lignin models. Tetrahedron 53(23):7877–7888

    Article  CAS  Google Scholar 

  • Evans PD, Wallis AFA, Owen NL (2000) Weathering of chemically modified wood surfaces. Wood Sci Technol 34(2):151–165

    Article  CAS  Google Scholar 

  • Feist WC, Hon DNS (1984) Chemistry of weathering and protection. In: Rowell R (ed) The chemistry of solid wood. American Chemical Society, Washington, pp 401–451

    Chapter  Google Scholar 

  • Forsthuber B, Schaller C, Grüll G (2013) Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci Technol 47:281–297

    Article  CAS  Google Scholar 

  • Grifoni D, Bacci L, Lonardo SD, Pinelli P, Scardigli A, Camilli F, Sabatini F, Zipoli G, Romani A (2014) UV protective properties of cotton and flax fabrics dyed with multifunctional plant extracts. Dyes Pigments 105:89–96

    Article  CAS  Google Scholar 

  • Hayoz P, Peter W, Rogez D (2003) A new innovative stabilization method for the protection of natural wood. Prog Org Coat 48:298–309

    Article  Google Scholar 

  • Heitner C (1993) Light-induced yellowing of wood-containing papers. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials. American Chemistry Society, Washington, pp 2–22

    Chapter  Google Scholar 

  • Hon DNS (1991) Weathering and phytochemistry of wood. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 513–546

    Google Scholar 

  • Hon DNS, Feist WC (1992) Hydroperoxidation in photo-irradiated wood surfaces. Wood Fiber Sci 24:448–455

    CAS  Google Scholar 

  • Hon DNS, Minemura N (2001) Color and discoloration. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 385–442

    Google Scholar 

  • Hon DNS, Ifju G, Feist WC (1980) Characteristics of free radicals in wood. Wood Fiber Sci 12(2):121–130

    CAS  Google Scholar 

  • Hon DNS, Chang ST, Feist WC (1982) Participation of singlet oxygen in the photodegradation of wood surfaces. Wood Sci Technol 16(3):193–201

    Article  CAS  Google Scholar 

  • Hsiao NC, Chang TC, Hsu FL, Chang ST (2016) Environmentally benign treatments for inhibiting the release of aqueous extracts from merbau heartwood. Wood Sci Technol 50(2):333–348

    Article  CAS  Google Scholar 

  • Hsiao NC, Chang TC, Lin HY, Chang ST (2017) Reaction mechanisms inhibiting the release of aqueous extracts from merbau heartwood by iron(II) and copper(II). Wood Sci Technol 51(3):653–668

    Article  CAS  Google Scholar 

  • Hsieh CY, Chang ST (2010) Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J Agric Food Chem 58(3):1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Huvaere K, Skibsted LH (2015) Flavonoids protecting food and beverages against light. J Sci Food Agric 95:20–35

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Ali SW, Purwar R, Rajendran S (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 34(3):295–304

    CAS  Google Scholar 

  • Kang HY, Park SJ, Kim YS (2002) Moisture sorption and ultrasonic velocity of artificially weathered sitka spruce. Mokchae Konghak 30(1):18–24

    Google Scholar 

  • Koontz JL, Marcy JE, O’Keefe SF, Duncan SE, Long TE, Moffitt RD (2010) Polymer processing and characterization of LLDPE films loaded with α-tocopherol, quercetin, and their cyclodextrin inclusion complexes. J Appl Polym Sci 117(4):2299–2309

    Article  CAS  Google Scholar 

  • Kujala TS, Loponen JM, Klika KD, Pihlaja K (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. J Agric Food Chem 48(11):5338–5342

    Article  CAS  PubMed  Google Scholar 

  • Kuo ML, Hu N (1991) Ultrastructural changes of photodegradation of wood surface exposed to UV. Holzforschung 45(5):347–353

    Article  CAS  Google Scholar 

  • Lin HY, Chang ST (2013) Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind Crops Prod 49:871–878

    Article  CAS  Google Scholar 

  • Lin GM, Chen YH, Yen PL, Chang ST (2015) Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J Tradit Complement Med 6(3):281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Makino R, Ohara S, Hashida K (2011) Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin. Holzforschung 65(5):651–657

    Article  CAS  Google Scholar 

  • Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers 7(6):1125–1144

    Article  CAS  Google Scholar 

  • Matthews RW, Robertson K, Marland G, Marland E (2007) Carbon in wood products and product substitution. In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, pp 91–104

    Chapter  Google Scholar 

  • McPhail DB, Hartley RC, Gardner PT, Duthie GG (2003) Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J Agric Food Chem 51(6):1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Mukai K, Daifuku K, Okabe K, Tanigaki T, Inoue K (1991) Structure-activity relationship in the quenching reaction of singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching of singlet oxygen and scavenging of peroxyl and phenoxyl radicals in solution. J Org Chem 56(13):4188–4192

    Article  CAS  Google Scholar 

  • Mukai K, Nagai S, Ohara K (2005) Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic Biol Med 39(6):752–761

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Steiner M (2010) Colour stabilisation of wood composites using polyethylene glycol and melamine resin. Eur J Wood Prod 68(4):435–443

    Article  Google Scholar 

  • Müller U, Ratzsch M, Schwanninger M, Steiner M, Zobl H (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. J Photochem Photobiol B 69:97–105

    Article  PubMed  Google Scholar 

  • Nagai S, Ohara K, Mukai K (2005) Kinetic study of the quenching reaction of singlet oxygen by flavonoids in ethanol solution. J Phys Chem B 109(9):4234–4240

    Article  CAS  PubMed  Google Scholar 

  • Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302(2):71–83

    Article  CAS  PubMed  Google Scholar 

  • Nzokou P, Kamdem DP (2002) Weathering of two hardwood species: African padauk: Pterocarpus soyauxii, and red maple: Acer rubrum. J Trop Forest Prod 8(2):200–209

    Google Scholar 

  • Ohkoshi M (2002) FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood. J Wood Sci 48(5):394–401

    Article  CAS  Google Scholar 

  • Pandey KK (2005) Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab 90:9–20

    Article  CAS  Google Scholar 

  • Peng Y, Liu R, Cao J, Luo S (2014) Antiweathering effects of vitamin E on wood flour/polypropylene composites. Polym Compos 35(11):2085–2093

    Article  CAS  Google Scholar 

  • Peng Y, Liu R, Cao J, Guo X (2015) Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering. Holzforschung 69(1):113–120

    CAS  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1985) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25(1):223–230

    Article  Google Scholar 

  • Samanta AK, Agarwal P (2009) Application of natural dyes on textiles. Indian J Fibre Text Res 34(4):384–399

    CAS  Google Scholar 

  • Shahid M, Shahid-ul-Islam, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  • Shahid-ul-Islam, Shahid M, Mohammad F (2013) Perspectives for natural product based agents derived from industrial plants in textile applications: a review. J Clean Prod 57:2–18

    Article  Google Scholar 

  • Tolvaj L, Tsuchikawa S, Inagaki T, Varga D (2015) Combined effects of UV light and elevated temperatures on wood discolouration. Wood Sci Technol 49(6):1225–1237

    Article  CAS  Google Scholar 

  • Tournaire C, Croux S, Maurette MT (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol B 19(3):205–215

    Article  CAS  PubMed  Google Scholar 

  • Wang SQ, Balagula Y, Osterwalder U (2010) Photoprotection: a review of the current and future technologies. Dermatol Ther 23:31–47

    Article  CAS  PubMed  Google Scholar 

  • Williams DE (1969) The structure of galvinoxyl, a stable phenoxyl radical. Mol Phys 16(2):145–151

    Article  CAS  Google Scholar 

  • Williams RS (2005) Weathering of wood. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Florida, pp 139–185

    Google Scholar 

  • Wu JH, Tung YT, Wang SY, Shyur LF, Kuo YH, Chang ST (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J Agric Food Chem 53:5917–5921

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Zhao Y, Xue Z, Jin H, Wang D (2001) The antioxidant properties of lycopene concentrate extracted from tomato paste. J Am Oil Chem Soc 48(7):697–701

    Google Scholar 

  • Živković V, Arnold M, Radmanović K, Richter K, Turkulin H (2014) Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: colour changes in natural weathering. Wood Sci Technol 48(2):239–252

    Article  Google Scholar 

  • Živković V, Arnold M, Pandey KK, Richter K, Turkulin H (2016) Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: correspondence of physical and chemical changes in natural weathering. Wood Sci Technol 50(5):989–1002

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully appreciate the financial support (NSC 102-2313-B-002-023-MY3) from the Ministry of Science and Technology Taiwan. We would also like to thank for the supports of materials from assistant research fellow Min-Jay Chung (the Experimental Forest, National Taiwan University) and Everlight Chemical Industrial Co. and the assistance of wood processing by associate professor rank specialist Chun-Chieh Huang (Department of Wood Science and Design, National Pingtung University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tzen Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, TC., Chang, ST. Multiple photostabilization actions of heartwood extract from Acacia confusa . Wood Sci Technol 51, 1133–1153 (2017). https://doi.org/10.1007/s00226-017-0930-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0930-9

Navigation