Skip to main content
Log in

ALA induced photodynamic effects on Gram positive and negative bacteria

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the present study we examined the production of high amounts of porphyrins upon induction by d-aminolevulinic acid (ALA) in 9 bacterial strains. This was performed by solely inducing the porphyrin biosynthesis pathway. Four of the strains were Gram positive bacteria and five were Gram negative strains. All strains, except Streptococcus faecalis, produced porphyrins when incubated in PBS with 0.38 mM ALA for 4 h. Excess porphyrin production was excreted to the medium. Gram positive bacteria exhibited fluorescent emission peaks at 622 nm for the endogenous and 617 nm for the excreted porphyrins. Gram negative bacteria exhibited a 630 nm emission peak for the endogenous and a 615 nm emission peak for the excreted extracellular porphyrins. Upon illumination of the ALA induced Staphylococcal strains with 407–420 nm blue light, a decrease of five orders of magnitude was demonstrated with a light dose of 50 J cm-2. Total eradication of the Staphylococcal strains could be achieved with a 100 J cm-2 dose, which resulted in a decrease in viability of seven orders of magnitude. The viability of all the induced Gram negative strains and B. cereus decreased by one or two orders of magnitude upon illumination with 50 and 100 J cm-2, respectively. This difference in the photoinactivation rate was found to be due to the distribution and amounts of the various porphyrins in the bacterial strains. The predominant porphyrin in the Staphylococcal strains was coproporphyrin (68.3–74.6%). In the Gram negative strains there was no predominant porphyrin and the porphyrins found were mostly 5-carboxyporphyrin, uroporphyrin, 7- carboxyporphyrin, coproporphyrin and protoporphyrin. In the B. cereus (Gram positive) strain the predominant porphyrin was uroporphyrin (75.8%). Although the total production of porphyrins in the Gram negative bacteria was higher than in the Staphylococcal strains, the amount of coproporphyrin produced by the latter was twice to three times higher than in the Gram negative strains. The extracellular excreted porphyrins did not contribute to the photoinactivation in any of the tested strains. Significant decreases in the Na+ and K+ content were detected in induced S. aureus after illumination while only small changes were observed in E. coli B. The green fluorescent protein within the cytoplasm of induced E. coli strains was only partially disrupted (by 60% only). These results indicate a partial yield of the effects generated by 1O2 radicals resulting from the photoinactivation of Gram negative bacteria and a successful generation of the same effects in the Staphylococcal strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. K. Hosein, D. W. Hill, L. E. Jenkins and J. T. Magee, Clinical significance of the emergence of bacterial resistance in the hospital environment, J. Appl. Microbiol., 2002, 92(Supp.), 90S–97S.

    Article  Google Scholar 

  2. Z. Malik, J. Hanania and Y. Nitzan, Bactericidal effects of photoactivated porphyrins–an alternative approach to antimicrobial drugs, J. Photochem. Photobiol., B, 1990, 5, 281–93.

    Article  CAS  Google Scholar 

  3. G. Bertoloni, B. Salvato, M. Dall’Acqua, M. Vazzoler and G. Jori, Hematoporphyrin-sensitized photoinactivation of Streptococcus faecalis, Photochem. Photobiol., 1984, 39, 811–816.

    Article  CAS  Google Scholar 

  4. Z. Malik, S. Gozhansky and Y. Nitzan, Effects of photoactivated HPD on bacteria and antibiotic resistance, Microbios Lett., 1982, 21, 103–112.

    CAS  Google Scholar 

  5. Z. Malik, H. Ladan, B. Ehrenberg and Y. Nitzan, in Photodynamic Therapy-Basic Principles and Clinical Applications, ed. B. Henderson and T. J. Dougherty, Marcel Dekker Inc., NY, 1992b, ch. 8, pp. 97–113.

  6. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–265.

    Article  CAS  Google Scholar 

  7. A. Orenstein, D. Klein, J. Kopolovic, E. Winkler, Z. Malik, N. Keller and Y. Nitzan, The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections, FEMS Immunol. Med. Microbiol., 1998, 19, 307–314.

    Article  Google Scholar 

  8. Y. Nitzan, B. Shainberg and Z. Malik, Photodynamic effects of deuteroporphyrin on Gram-positive bacteria, Curr. Microbiol., 1987, 15, 252–258.

    Article  Google Scholar 

  9. Y. Nitzan, S. Goshansky and Z. Malik, Effect of photoactivated hematoporphyrin derivative on the viability of Staphylococcus aureus, Curr. Microbiol., 1983, 8, 279–284.

    Article  CAS  Google Scholar 

  10. G. Bertoloni, B. Salvato, M. Dall’Acqua, M. Vazzoler and G. Jori, Hematoporphyrin sensitized photoinactivation of Streptococcus faecalis, Photochem. Photobiol., 1984, 39, 811–816.

    Article  CAS  Google Scholar 

  11. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of Gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  Google Scholar 

  12. Y. Nitzan, R. Dror, H. Ladan, Z. Malik, S. Kimel and V. Gottfried, Structure–activity relationship of porphines for photoinactivation of bacteria, Photochem. Photobiol., 1995, 62, 342–347.

    Article  CAS  Google Scholar 

  13. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 71, 149–156.

    Article  CAS  Google Scholar 

  14. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Photoinactivation of bacteria. Use of a cationic water soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  15. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva and G. Jori, Meso-substitiuted cationic porphyrins as efficient photosensitizers of Gram-positive and Gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  16. Z. Malik, H. Ladan, Y. Nitzan and Z. Smetana, Antimicrobial and antiviral activity of porphyrin photosensitization, Proc. Biomed. Opt., SPIE, 1993, 2078, 305–312.

    Article  Google Scholar 

  17. N. S. Soukos, L. A. Ximenez-Fyvie, M. R. Hamblin, S. S. Socransky and T. Hasan, Targeted antimicrobial photochemotherapy, Antimicrob. Agents Chemother., 1998, 42, 2595–2601.

    Article  CAS  Google Scholar 

  18. Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter Baumannii and Escherichia coli B by a Cationic Hydrophilic porphyrin at Various Light Wavelengths, Curr. Microbiol., 2001, 42, 408–414.

    Article  Google Scholar 

  19. Y. Nitzan and H. Ashkenazi, Photoinactivation of Deinoccuccus radiodurans: An unusual Gram-positive microorganism, Photochem. Photobiol., 1999, 69, 505–510.

    Article  CAS  Google Scholar 

  20. G. Valduga, B. Breda, G. M. Giacometti, G. Jori and E. Reddi, Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine, Biochem. Biophys. Res. Commun., 1999, 256, 84–88.

    Article  CAS  Google Scholar 

  21. B. Kjeldstad, T. Christensen and A. Johnsson, Uptake of hematoporphyrin derivative in bacteria and photosensitization of Propionibacterium acnes bacteria, Photobiochem. Photobiophys., 1986, 10, 163–173.

    CAS  Google Scholar 

  22. A. Johnsson, B. Kjeldstad and T. B. Melo, Fluorescence from pilosebaceous follicles, Arch. Dermatol. Res., 1987, 279, 190–193.

    Article  CAS  Google Scholar 

  23. E. M. Gribbon, J. G. Shoesmith, W. J. Cunliffe and K. T. Holland, The microaerophily and photosensitivity of Propionibacterium acnes, J. Appl. Bacteriol., 1994, 77, 583–590.

    Article  CAS  Google Scholar 

  24. W. L. Lee, A. R. Shalita and M. B. Poh-Fitzpatrick, Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum, J. Bacteriol., 1994, 133, 811–815.

    Article  Google Scholar 

  25. J. C. Kennedy and R. H. Pottier, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy, J. Photochem. Photobiol., B, 1992, 14, 275–292.

    Article  CAS  Google Scholar 

  26. Y. Nitzan, Z. Malik, M. Kauffman and B. Ehrenberg, Induction of endogenous porphyrin production in bacteria and subsequence photoinactivation by various light sources, in Photochemotherapy: Photodynamic Therapy and other modalities III, ed. K. Berg, B. Ehrenberg, Z. Malik and J. Moan, 1997, pp. 89–94.

    Chapter  Google Scholar 

  27. Y. Nitzan and M. Kauffman, Endogenous porphyrin production in bacteria by d-aminolevulinic acid and subsequent bacterial photoeradication, Lasers Med. Sci., 1999, 14, 269–277.

    Article  Google Scholar 

  28. F. W. van der Meulen, K. Ibrahim, H. J. C. M. Sterenborg, L. V. Alphen, A. Maikoe and J. Dankert, Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins, J. Photochem. Photobiol., B, 1997, 40, 204–208.

    Article  Google Scholar 

  29. R. Sailer, W. S. L. Strauss, K. Konig, A. Ruck and R. Steiner, Correlation between porphyrin biosynthesis and photodynamic inactivation of Pseudomonas aeruginasa after incubation with 5-aminolevulinic acid, J. Photochem. Photobiol., B, 1997, 36, 236–242.

    Article  Google Scholar 

  30. K. Szocs, F. Gabor, G. Csik and J. Fidy, d-aminolevulinic acid induced porphyrin synthesis and photodynamic inactivation of Escherichia coli B, J. Photochem. Photobiol., B, 1999, 50, 8–17.

    Article  CAS  Google Scholar 

  31. F. Ausubel, R. Brent, R. E. Kingstone, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl, Introduction of plasmid DNA into cells, in Short Protocols in Molecular Biology, Wiley & Sons, New York, 1995, vol. 1, pp. 21–22.

    Google Scholar 

  32. Z. Malik, T. Babushkin, S. Sher, J. Hanania, H. Ladan, Y. Nitzan and S. Salzberg, Collapse of K+ and ionic balance during photodynamic inactivation of leukemic cells, erythrocytes and Staphylococcus aureus, Int. J. Biochem., 1993, 25, 1399–1406.

    Article  CAS  Google Scholar 

  33. F. G’abor, K. Szocs, P. Maillard and G. Csik, Photobiological activity of exogenous and endogenous porphyrin derivatives in Esherichia coli and Enterococcus hirae cells, Radiat. Environ. Biophys., 2001, 40, 145–151.

    Article  Google Scholar 

  34. K. Szocs, G. Csik, A. D. Kaposi and J. Fidy, In situ detection of ALA stimulated porphyrin metabolic products in Escherichia coli B by fluorescence line narrowing spectroscopy, Biochem. Biophys. Acta — Mol. Cell Res., 2001, 1541, 170–178.

    Article  CAS  Google Scholar 

  35. H. Ashkenazi, Z. Malik, Y. Harth and Y. Nitzan, Eradication of Propionibacterium acnes by its endogenous porphyrins after illumination with high intensity blue light, FEMS Immunol. Med. Microbiol., 2003, 35, 17–24.

    Article  CAS  Google Scholar 

  36. H. Ashkenazi, Y. Nitzan and D. Gal, Photodynamic effects of antioxidant substituted porphyrin photosensitizers on Gram positive and negative bacteria, Photochem. Photobiol., 2003, 77, 186–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitzan, Y., Salmon-Divon, M., Shporen, E. et al. ALA induced photodynamic effects on Gram positive and negative bacteria. Photochem Photobiol Sci 3, 430–435 (2004). https://doi.org/10.1039/b315633h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b315633h

Navigation