Skip to main content
Log in

Sensitization of Salmonella enterica with 5-aminolevulinic acid-induced endogenous porphyrins: a spectroscopic study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) of bacterial strains presents an attractive potential alternative to antibiotic therapies in search of the solution for the chemoresistance problem. The efficacy of the treatment is dependent on the interaction of photochemically active substances called photosensitizers (PSs) with the bacterial cell wall or their intracellular accumulation. In addition to exogenous PSs, other molecules such as 5-aminolevulinic acid (5-ALA), a natural precursor of heme, are gaining interest. When provided exogenously to cells, 5-ALA uptake results in the overproduction of various photoactive porphyrins. The pattern of their intracellular accumulation and release to the surroundings depends on incubation conditions such as the applied 5-ALA concentration, cell density and incubation duration. The detection of endogenously synthesized porphyrins in samples of Salmonella enterica cells and supernatants was accomplished after 4 h and 20 h incubation periods by means of fluorescence spectroscopy. The relative proportions of different types of porphyrins were assessed by modeling the registered spectra with the fluorescence spectra of standard porphyrins. After the shorter incubation period, the dominant porphyrins in the supernatant medium were coproporphyrins. The longer incubation period shifted the relative proportion of intracellular porphyrins from protoporphyrin IX towards water-soluble porphyrins such as uroporphyrin I, which interfered with additional by-products. The time-dependent changes in compositions of both intracellular and extracellular porphyrins imply that 5-ALA-induced sensitization might have triggered a complex protective mechanism of bacterial cells. Thus, identification and evaluation of the relative amounts of porphyrins, which accumulate in bacterial cells and are extruded outside after different time periods, could provide access to valuable information, working towards more efficient applications of 5-ALA-based antibacterial PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-K. Eng, et al., Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance, Front. Life Sci., 2015, 8, 284–293.

    CAS  Google Scholar 

  2. J. A. Crump, S. P. Luby and E. D. Mintz, The global burden of typhoid fever, Bull. W. H. O., 2004, 82, 346–353.

    PubMed  Google Scholar 

  3. L. J. V. Piddock, Multidrug-resistance efflux pumps - not just for resistance, Nat. Rev. Microbiol., 2006, 4, 629–636.

    Article  CAS  Google Scholar 

  4. Science against microbial pathogens: communicating current research and technological advances - Volume 1. Available at: http://www.formatex.org/microbiology3/chapters1. html (Accessed: 19th March 2018).

  5. G. Jori, et al., Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Google Scholar 

  6. F. F. Sperandio, Y.-Y. Huang and M. R. Hamblin, Antimicrobial photodynamic therapy to kill Gram-negative bacteria, Recent Pat. Anti-Infect. Drug Discovery, 2013, 8, 108–120.

    CAS  Google Scholar 

  7. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: Problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.

    CAS  Google Scholar 

  8. F. W. van der Meulen, et al., Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins, J. Photochem. Photobiol., B, 1997, 40, 204–208.

    Article  Google Scholar 

  9. J. C. Kennedy and R. H. Pottier, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy, J. Photochem. Photobiol., B, 1992, 14, 275–292.

    Article  CAS  Google Scholar 

  10. M. Doss and W. K. Philipp-Dormston, Porphyrin and heme biosynthesis from Endogenous and exogenous delta-aminolevulinic acid in Escherichia coli, Pseudomonas aeruginosa, and Achromobacter metalcaligenes, Hoppe. Seylers, Z. Physiol. Chem., 1971, 352, 725–733.

    Article  CAS  Google Scholar 

  11. Y. Nitzan, Z. Malik, M. Kauffman and B. Ehrenberg, Induction of endogenic porphyrin production in bacteria and subsequent photoinactivation by various light sources, in Photochemotherapy: Photodynamic Therapy and Other Modalities III, International Society for Optics and Photonics, 1997, vol. 3191, pp. 89–95.

  12. Y. Nitzan and M. Kauffman, Endogenous Porphyrin Production in Bacteria by δ-Aminolaevulinic Acid and Subsequent Bacterial Photoeradication, Lasers Med. Sci., 1999, 14, 269–277.

    Google Scholar 

  13. Ž Lukšiene, New Approach to Inactivation of Harmful and Pathogenic Microorganisms by Photosensitization, Food Technol. Biotechnol., 2005, 43, 411–418.

    Google Scholar 

  14. G. Jori and O. Coppellotti, Inactivation of Pathogenic Microorganisms by Photodynamic Techniques: Mechanistic Aspects and Perspective Applications, Anti- Infect. Agents Med. Chem., 2007, 6, 119–131.

    CAS  Google Scholar 

  15. T. Dai, et al., Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?, Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother., 2012, 15, 223–236.

    Google Scholar 

  16. I. Buchovec, Z. Vaitonis and Z. Luksiene, Novel approach to control Salmonella enterica by modern biophotonic technology: photosensitization, J. Appl. Microbiol., 2009, 106, 748–754.

    Article  CAS  Google Scholar 

  17. H. Nikaido, Multidrug efflux pumps of Gram-negative bacteria, J. Bacteriol., 1996, 178, 5853–5859.

    Article  CAS  Google Scholar 

  18. R. Tatsumi and M. Wachi, TolC-Dependent Exclusion of Porphyrins in Escherichia coli, J. Bacteriol., 2008, 190, 6228–6233.

    Article  CAS  Google Scholar 

  19. E. Turlin, et al., Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli, MicrobiologyOpen, 2014, 3, 849–859.

    Article  CAS  Google Scholar 

  20. L. M. Bogomolnaya, et al., The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress, mBio, 2013, 4, e00630–e00613.

    PubMed  Google Scholar 

  21. K. Nishino, T. Latifi and E. A. Groisman, Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium, Mol. Microbiol., 2006, 59, 126–141.

    CAS  Google Scholar 

  22. W. Dietel, R. Pottier, W. Pfister, P. Schleier and K. Zinner, 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: a study of the biosynthesis of porphyrins by bacteria of the human digestive tract, J. Photochem. Photobiol., B, 2007, 86, 77–86.

    Article  CAS  Google Scholar 

  23. A. Lang, et al., Rapid screening test for porphyria diagnosis using fluorescence spectroscopy, in Clinical and Biomedical Spectroscopy and Imaging IV, Optical Society of America, 2015, paper 953706, 953706, DOI:DOI: 10.1364/ECBO.2015.953706.

  24. A. A. Lamola and T. Yamane, Zinc protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia, Science, 1974, 186, 936–938.

    Article  CAS  Google Scholar 

  25. K. Csatorday, R. Maccoll and D. S. Berns, Accumulation of protoporphyrin IX and Zn protoporphyrin IX in Cyanidium caldarium, Proc. Natl. Acad. Sci. U. S. A., 1981, 78, 1700–1702.

    Article  CAS  Google Scholar 

  26. A. Johnsson, B. Kjeldstad and T. B. Melø, Fluorescence from pilosebaceous follicles, Arch. Dermatol. Res., 1987, 279, 190–193.

    CAS  Google Scholar 

  27. B. Lederer and P. Böger, Binding and protection of porphyrins by glutathione S-transferases of Zea mays L, Biochim. Biophys. Acta, 2003, 1621, 226–233.

    CAS  Google Scholar 

  28. B. Kjeldstad, A. Johnsson and S. Sandberg, Influence of pH on porphyrin production in Propionibacterium acnes, Arch. Dermatol. Res., 1984, 276, 396–400.

    CAS  Google Scholar 

  29. S. Schwartz, B. Stephenson, D. Sarkar, H. Freyholtz and G. Ruth, Quantitative assay of erythrocyte “free” and zinc-protoporphyrin: Clinical and genetic studies, Int. J. Biochem., 1980, 12, 1053–1057.

    Article  CAS  Google Scholar 

  30. L. M. Scolaro, et al., Aggregation Behavior of Protoporphyrin IX in Aqueous Solutions: Clear Evidence of Vesicle Formation, J. Phys. Chem. B, 2002, 106, 2453–2459.

    Article  CAS  Google Scholar 

  31. N. Fotinos, M. Convert, J.-C. Piffaretti, R. Gurny and N. Lange, Effects on Gram-negative and Gram-positive bacteria mediated by 5-aminolevulinic Acid and 5-aminolevulinic acid derivatives, Antimicrob. Agents Chemother., 2008, 52, 1366–1373.

    Article  CAS  Google Scholar 

  32. R. Bruce-Micah, D. Hüttenberger, L. Freitag, J. Cullum and H.-J. Foth, Pharmacokinetic of ALA and h-ALA induced porphyrins in the models Mycobacterium phlei and Mycobacterium smegmatis, J. Photochem. Photobiol., B, 2009, 97, 1–7.

    Article  CAS  Google Scholar 

  33. M. J. Lee, et al., Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli, J. Microbiol. Biotechnol., 2013, 23, 668–673.

    Article  CAS  Google Scholar 

  34. W. T. Morgan, A. Smith and P. Koskelo, The interaction of human serum albumin and hemopexin with porphyrins, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1980, 624, 271–285.

    Article  CAS  Google Scholar 

  35. A. Battisti, P. Morici, G. Signore, F. Ghetti and A. Sgarbossa, Compositional analysis of endogenous porphyrins from Helicobacter pylori, Biophys. Chem., 2017, 229, 25–30.

    CAS  Google Scholar 

  36. G. Hennig, et al., Dual-wavelength excitation for fluorescence- based quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood, J. Biophotonics, 2014, 7, 514–524.

    Article  CAS  Google Scholar 

  37. A. C. Deacon and G. H. Elder, ACP Best Practice No 165: front line tests for the investigation of suspected porphyria, J. Clin. Pathol., 2001, 54, 500–507.

    Article  CAS  Google Scholar 

  38. I. Stojiljkovic, V. Kumar and N. Srinivasan, Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria, Mol. Microbiol., 1999, 31, 429–442.

    CAS  Google Scholar 

  39. D. Dolphin, The Porphyrins V6: Biochemistry, Part A: 006, Academic Press, 2012.

  40. I. Stojiljkovic, B. D. Evavold and V. Kumar, Antimicrobial properties of porphyrins, Expert Opin. Invest. Drugs, 2001, 10, 309–320.

    CAS  Google Scholar 

  41. H. I. Zgurskaya, Y. Yamada, E. B. Tikhonova, Q. Ge and G. Krishnamoorthy, Structural and functional diversity of bacterial membrane fusion proteins, Biochim. Biophys. Acta, 2009, 1794, 794–807.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelina Polmickaitė-Smirnova.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00200f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polmickaitė-Smirnova, E., Bagdonas, S. & Anusevičius, Ž. Sensitization of Salmonella enterica with 5-aminolevulinic acid-induced endogenous porphyrins: a spectroscopic study. Photochem Photobiol Sci 18, 2730–2739 (2019). https://doi.org/10.1039/c9pp00200f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00200f

Navigation