Skip to main content
Log in

Probing the binding dynamics to sodium cholate aggregates using naphthalene derivatives as guests

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The binding dynamics with bile salt aggregates for a series of naphthalene derivatives of different polarities was studied using fluorescence and laser flash photolysis. Fluorescence was employed to determine the nature of the binding site for each guest and the accessibility of the bound guest to quenchers. Laser flash photolysis was employed to study the mobility of the triplet states of the naphthalenes between the sodium cholate aggregates and the aqueous phase. Primary aggregates, which provide an environment protected from quenchers in the aqueous phase, bind 1- and 2-ethylnaphthalene as guests. The complexation dynamics with this type of aggregate is slow. 1- and 2-Naphthyl-1-ethanol, and 1- and 2-acetonaphthone bind to the secondary aggregates, which provide moderate protection from quenching and faster binding dynamics. The addition of salts lowered the cholate concentration at which primary aggregates were formed, but did not influence the formation of secondary aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Small, S. A. Penkett and D. Chapman, Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy, Biochim. Biophys. Acta, 1969, 176, 178–189.

    Article  CAS  PubMed  Google Scholar 

  2. D. M. Small, The physical chemistry of cholanic acids, in The Bile Salts, ed. P. P. Nair and D. Kritchevsky, Plenum Press, New York, 1971, vol. 1, pp. 249–256.

    CAS  Google Scholar 

  3. M. Chen, M. Grätzel and J. K. Thomas, Photochemical reactions in micelles of biological importance, Chem. Phys. Lett., 1974, 24, 65–68.

    Article  CAS  Google Scholar 

  4. M. Chen, M. Grätzel and J. K. Thomas, Kinetic studies in bile acid micelles, J. Am. Chem. Soc., 1975, 97, 2052–2057.

    Article  CAS  PubMed  Google Scholar 

  5. P. Mukerjee and J. R. Cardinal, Solubilization as a method for studying self-association: solubility of naphthalene in the bile salt sodium cholate and the complex pattern of its aggregation, J. Pharm. Sci., 1976, 65, 882–886.

    Article  CAS  Google Scholar 

  6. A. Djavanbakht, K. M. Kale and R. Zana, Ultrasonic absorption and density studies of the aggregation in aqueous solutions of bile acid salts, J. Colloid Interface Sci., 1977, 59, 139–148.

    Article  CAS  Google Scholar 

  7. D. G. Oakenfull and L. R. Fischer, The role of hydrogen bonding in the formation of bile salt micelles, J. Phys. Chem., 1977, 81, 1838–1841.

    Article  CAS  Google Scholar 

  8. R. Zana, Comments on the paper “The role of hydrogen bonding in the formation of bile salt micelles” by D. G. Oakenfull and L. R. Fisher, J. Phys. Chem., 1978, 82, 2440–2443.

    Article  CAS  Google Scholar 

  9. D. G. Oakenfull and L. R. Fischer, Reply to “Comment on the role of hydrogen bonding in the formation of bile salt micelles”, J. Phys. Chem., 1978, 82, 2443–2445.

    Article  CAS  Google Scholar 

  10. N. A. Mazer, M. C. Carey, R. F. Kwasnick and G. B. Benedek, Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles, Biochemistry, 1979, 18, 3064–3075.

    Article  CAS  PubMed  Google Scholar 

  11. J. P. Kratohvil, W. P. Hsu, M. A. Jacobs, T. M. Aminabhavi and Y. Mukunoki, Concentration-dependent aggregation patterns of conjugated bile salts in aqueous sodium chloride solutions, Colloid Polym. Sci., 1983, 261, 781–785.

    Article  CAS  Google Scholar 

  12. P. Shurtenberger, N. Mazer and W. Känzig, Static and dynamic light scattering studies of micellar growth and interactions in bile salt solutions, J. Phys. Chem., 1983, 87, 308–315.

    Article  Google Scholar 

  13. S. Hashimoto and J. K. Thomas, Photophysical studies of pyrene in micellar sodium taurocholate at high salt concentrations, J. Colloid Interface Sci., 1984, 102, 152–163.

    Article  CAS  Google Scholar 

  14. R. T. Fischer, M. S. Cowlen, M. E. Dempsey and F. Schroeder, Fluorescence of Δ5,7,9(11),22-ergostatetraen-3β-ol in micelles, sterol carrier protein complexes, and plasma membranes, Biochemistry, 1985, 24, 3322–3331.

    Article  CAS  PubMed  Google Scholar 

  15. C. J. O’Connor and R. G. Wallace, Physico-chemical behavior of bile salts, Adv. Colloid Interface Sci., 1985, 22, 1–111.

    Article  Google Scholar 

  16. R. Zana and D. Guveli, Fluorescence probing study of the association of bile salts in aqueous solutions, J. Phys. Chem., 1985, 89, 1687–1690.

    Article  CAS  Google Scholar 

  17. J. P. Kratohvil, Size of bile salt micelles: techniques, problems and results, Adv. Colloid Interface Sci., 1986, 26, 131–154.

    Article  CAS  PubMed  Google Scholar 

  18. J. P. Kratohvil, W. P. Hsu and D. I. Kwok, How large are micelles of di-α-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurocholate and sodium deoxycholate, Langmuir, 1986, 2, 256–258.

    Article  CAS  Google Scholar 

  19. G. Esposito, E. Giglio, N. V. Pavel and A. Zanobi, Size and shape of sodium deoxycholate micellar aggregates, J. Phys. Chem., 1987, 91, 356–362.

    Article  CAS  Google Scholar 

  20. A. F. Hofmann and K. J. Mysels, Bile salts as biological surfactants, Colloids Surf., 1988, 30, 145–173.

    Article  CAS  Google Scholar 

  21. K. Nithipatikom and L. B. McGown, Effects of metal cations on the fluorescence intensity of polycyclic aromatic hydrocarbons in sodium taurocholate micellar solution, Anal. Chem., 1988, 60, 1043–1045.

    Article  CAS  Google Scholar 

  22. A. R. Camanelli, S. Candeloro de Sanctis, E. Chiessi, M. D’Alagni, E. Giglio and L. Scaramuzza, Sodium glyco- and taurodeoxycholate: possible helical models for conjugate bile salt micelles, J. Phys. Chem., 1989, 93, 1536–1542.

    Article  Google Scholar 

  23. H. Kawamura, Y. Murata, T. Yamaguchi, H. Igimi, M. Tanaka, G. Sugihara and J. P. Kratohvil, Spin-label studies of bile salt micelles, J. Phys. Chem., 1989, 93, 3321–3326.

    Article  CAS  Google Scholar 

  24. K. Nithipatikom and L. B. McGown, Fluorescence studies of energy transfer in sodium taurocholate and sodium dodecyl sulfate micellar solutions, Anal. Chem., 1989, 61, 1405–1410.

    Article  CAS  Google Scholar 

  25. J. Zakrzewska, V. Markovic, D. Vucelic, L. Feigin, A. Dembo and L. Mogilevsky, Investigation of aggregation behavior of bile salts by small-angle X-ray scattering, J. Phys. Chem., 1990, 94, 5078–5081.

    Article  CAS  Google Scholar 

  26. K. Kano, S. Tatemoto and S. Hashimoto, Specific interactions between Sodium Deoxycholate and its water-insoluble analogues. Mechanisms for premicelle and micelle formation of sodium deoxycholate, J. Phys. Chem., 1991, 95, 966–970.

    Article  CAS  Google Scholar 

  27. S. M. Meyerhoffer and L. B. McGown, Microenvironments of fluorescence probes in sodium taurocholate and sodium taurodeoxycholate bile salt media, Anal. Chem., 1991, 63, 2082–2086.

    Article  CAS  Google Scholar 

  28. S. M. Meyerhoffer and L. B. McGown, Fluorescent probe studies of metal salt effects on bile salt aggregation, J. Am. Chem. Soc., 1991, 113, 2146–2149.

    Article  CAS  Google Scholar 

  29. R. P. Hjelm Jr., P. Thiyagarajan and H. Alkan-Onyuksel, Organization of phosphatidylcholine and bile salts in rodlike micelles, J. Phys. Chem., 1992, 96, 8653–8661.

    Article  CAS  Google Scholar 

  30. A. Coello, F. Meijide and E. Rodriguéz Núñez, J. Vasquez Tato, Aggregation behavior of sodium cholate in aqueous solution, J. Phys. Chem., 1993, 97, 10186–19191.

    Article  CAS  Google Scholar 

  31. G. Li and L. B. McGown, A new approach to polydispersity studies of sodium taurocholate and sodium taurodeoxycholate aggregates using dynamic fluorescence anisotropy, J. Phys. Chem., 1993, 97, 6745–6752.

    Article  CAS  Google Scholar 

  32. A. Seret and A. Van de Vorst, Photophysical investigation of Rose Bengal in aqueous sodium taurocholate solutions, J. Photochem. Photobiol., B, 1993, 17, 47–56.

    Article  CAS  Google Scholar 

  33. G. Li and L. B. McGown, Model for bile salt micellization and solubilization from studies of a “polydisperse” array of fluorescent probes and molecular modeling, J. Phys. Chem., 1994, 98, 13711–13719.

    Article  CAS  Google Scholar 

  34. A. Coello, F. Meijide, E. Rodriguéz Núñez and J. Vasquez Tato, Aggregation behavior of bile salts in aqueous solution, J. Pharm. Sci., 1996, 85, 9–15.

    Article  CAS  PubMed  Google Scholar 

  35. C. Ju and C. Bohne, Probing bile salt aggregates by fluorescence quenching, Photochem. Photobiol., 1996, 63, 60–67.

    Article  CAS  Google Scholar 

  36. C. Ju and C. Bohne, Dynamics of probe complexation to bile salt aggregates, J. Phys. Chem., 1996, 100, 3847–3854.

    Article  CAS  Google Scholar 

  37. A. Jover, F. Meijide, E. Rodríguez Núñez and J. Vásquez Tato, Aggregation number for sodium deoxycholate from steady-state and time-resolved fluorescence, Langmuir, 1997, 13, 161–164.

    Article  CAS  Google Scholar 

  38. W. L. Hinze, W. Hu and F. H. Quina and I. U. Mohammadzai, Bile acid/salt surfactant systems: general properties and survey of analytical applications, in Organized Assemblies in Chemical Analysis, ed. W. L. Hinze, JAI Press Inc., Stamford, 2000, vol. 2, pp. 1–70.

    Google Scholar 

  39. C. Bohne, Dynamics of probe interaction with bile salt aggregates, in Organized Assemblies in Chemical Analysis, ed. W. L. Hinze, JAI Press Inc., Stamford, 2000, vol. 2, pp. 147–166.

    Google Scholar 

  40. Y. Li, J. F. Holwarth and C. Bohne, Study of the aggregation dynamics of sodium taurodeoxycholate and sodium deoxycholate, Langmuir, 2000, 16, 2038–2041.

    Article  CAS  Google Scholar 

  41. O. Rinco, M. H. Kleinman and C. Bohne, Reactivity of benzophenones in the different binding sites of sodium cholate aggregates, Langmuir, 2001, 17, 5781–5790.

    Article  CAS  Google Scholar 

  42. G. Conte, R. Di Blasi, E. Giglio, A. Parretta and N. V. Pavel, Nuclear magnetic resonance and X-ray studies on micellar aggregates of sodium deoxycholate, J. Phys. Chem., 1984, 88, 5720–5724.

    Article  CAS  Google Scholar 

  43. E. Giglio, S. Loreti and N. V. Pavel, EXAFS: a new approach to the structure of micellar aggregates, J. Phys. Chem., 1988, 92, 2858–2862.

    Article  CAS  Google Scholar 

  44. E. Bottari, A. A. D’Archivio, M. R. Festa, L. Galantini and E. Giglio, Structure and composition of sodium taurocholate micellar aggregates, Langmuir, 1999, 15, 2996–2998.

    Article  CAS  Google Scholar 

  45. A. Bonincontro, G. Briganti, A. A. D’Archivio, L. Galantini and E. Giglio, Structural study of the micellar aggregates of sodium taurodeoxycholate, J. Phys. Chem. B, 1997, 101, 10303–10309.

    Article  CAS  Google Scholar 

  46. M. D’Alagni, A. A. D’Archivio, L. Galantini and E. Giglio, Structural study of the micellar aggregates of sodium chenodeoxycholate and sodium deoxycholate, Langmuir, 1997, 13, 5811–5815.

    Article  Google Scholar 

  47. M. D’Alagni, E. Giglio and S. Petriconi, Calorimetric and optical study of micellar aggregates of sodium taurocholate, Colloid Polym. Sci., 1987, 265, 517–521.

    Article  Google Scholar 

  48. A. R. Campanelli, S. C. De Sanctis, E. Giglio, N. V. Pavel and C. Quagliata, From crystal to micelle: a new approach to the micellar structure, J. Inclusion Phenom. Mol. Recognit. Chem., 1989, 7, 391–400.

    Article  CAS  Google Scholar 

  49. C. Bohne, R. W. Redmond and J. C. Scaiano, Use of photophysical techniques in the study of organized assemblies, in Photochemistry in Organized and Constrained Media, ed. V. Ramamurthy, VCH Publishers, New York, 1991,, pp. 79–132.

    Google Scholar 

  50. Y. Liao and C. Bohne, Alcohol effect on equilibrium constants and dissociation dynamics of xanthone-cyclodextrin complexes, J. Phys. Chem., 1996, 100, 734–743.

    Article  CAS  Google Scholar 

  51. K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems, Academic Press, Orlando, 1987.

    Google Scholar 

  52. Photochemistry in Organized and Constrained Media, ed. V. Ramamurthy, VCH Publishers: New York, 1991.

    Google Scholar 

  53. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.

    Book  Google Scholar 

  54. S. E. Webber, The role of time-dependent measurements in elucidating static versus dynamic quenching processes, Photochem. Photobiol., 1997, 65, 33–38.

    Article  CAS  Google Scholar 

  55. A. Sillen and Y. Engelborghs, The correct use of “average” fluorescence parameter, Photochem. Photobiol., 1998, 67, 475–486.

    CAS  Google Scholar 

  56. J. H. Clements and S. E. Webber, Fluorescence quenching kinetics of anthracene covalently bound to poly(methacrylic acid): midchain labeling, J. Phys. Chem. A, 1999, 103, 2513–2523.

    Article  CAS  Google Scholar 

  57. M. H. Kleinman and C. Bohne, Use of photophysical probes to study dynamic processes in supramolecular structures, in Molecular and Supramolecular Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker Inc., New York, 1997, vol. 1, pp. 391–466.

    CAS  Google Scholar 

  58. M. Almgren, F. Grieser and J. K. Thomas, Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions, J. Am. Chem. Soc., 1979, 101, 279–291.

    Article  CAS  Google Scholar 

  59. N. J. Turro, T. Okubo and C.-J. Chung, Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods, J. Am. Chem. Soc., 1982, 104, 1789–1794.

    Article  CAS  Google Scholar 

  60. T. C. Barros, K. Stefaniak, J. F. Holzwarth and C. Bohne, Complexation of naphthylethanols with β-cyclodextrin, J. Phys. Chem. A, 1998, 102, 5639–5651.

    Article  CAS  Google Scholar 

  61. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.

    Google Scholar 

  62. I. Carmichael and G. L. Hug, Triplet-triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 1986, 15, 1–250.

    Article  Google Scholar 

  63. J. P. Kratohvil and H. T. DelliColli, Micellar properties of bile salts. Sodium taurodeoxycholate and sodium glycodeoxycholate, Can. J. Biochem., 1968, 46, 945–952.

    Article  CAS  PubMed  Google Scholar 

  64. M. C. Carey and D. M. Small, Micellar properties of dihydroxy and trihydroxy bile salts: effect of counterion and temperature, J. Colloid Interface Sci, 1969, 31, 382–396.

    Article  CAS  PubMed  Google Scholar 

  65. F. H. Quina, E. O. Alonso and J. P. S. Farah, Incorporation of nonionic solutes into aqueous micelles: a linear solvation free energy relationship analysis, J. Phys. Chem., 1995, 99, 11708–11714.

    Article  CAS  Google Scholar 

  66. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 2nd edn., 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Fred Lewis on the event of his 60th birthday.

Electronic supplementary information (ESI) available: tables containing the Stern-Volmer and quenching rate constants for the naphthalene derivatives in the presence of cholate and salt. See http://www.rsc.org/suppdata/pp/b3/b308335g/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinco, O., Nolet, MC., Ovans, R. et al. Probing the binding dynamics to sodium cholate aggregates using naphthalene derivatives as guests. Photochem Photobiol Sci 2, 1140–1151 (2003). https://doi.org/10.1039/b308335g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b308335g

Navigation