Skip to main content
Log in

Reactive oxygen species and UV-B: effect on cyanobacteria

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are involved in the damage and response of cyanobacteria to UV-B irradiation. In cyanobacteria, there are several targets for the potentially toxic ROS such as lipids, DNA and protein. The damage to photosynthetic apparatus induces the inhibition of photosynthesis that is mediated partially by ROS. UV-B-induced oxidative stress and oxidative damage increases with irradiation time and can be reversed after long-term irradiation. This raises the interesting question of whether cyanobacteria can acclimatize to the present UV-B stress. On one hand, ROS may also act as signal molecules and mediate the genetic regulation of photosynthetic genes and the induction of antioxidant enzymes. On the other hand, the efficient defense and repair system allows cyanobacteria to recover from the oxidative damage under moderate UV-B irradiation. In addition, the following methods are discussed: the fluorogenic probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), used to detect oxidative stress induced by UV-B; thiobarbituric acid reactive substances (TBARS), used to determine lipid peroxidation in cyanobacteria; fluorimetric analysis of DNA unwinding (FADU), used to quantify DNA strand breaks induced by ROS formation under UV-B stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

DCF:

2′,7′-dichlorofluorescein

DCFH:

2′,7′-dichlorodihydrofluorescein

DCFH-DA:

2′,7′-dichlorodihydrofluorescein diacetate

dsDNA:

double-strand DNA

FADU:

fluorimetric analysis of DNA unwinding

H2O2:

hydrogen peroxide

OH˙:

hydroxyl radical

MDA:

malondialdehyde (propanedial)

NAC:

N-acetylcysteine

PAR:

photosynthetically active radiation (400–700 nm)

PSI:

photosystem I

PSII:

photosystem II

ROS:

reactive oxygen species

1O2:

singlet oxygen

SOD:

superoxide dismutase

O2˙:

superoxide radical

TBARS:

thiobarbituric acid reactive substances

UV-A:

ultraviolet A (315–400 nm)

UV-B:

ultraviolet B (280–315 nm).

References

  1. S. Madronich, R. L. McKenzie, L. O. Björn and M. M. Caldwell, Changes in biologically active ultraviolet radiation reaching the Earth’s surface, J. Photochem. Photobiol., B 1998, 46, 5–19.

    Article  CAS  Google Scholar 

  2. M. M. Caldwell, L. O. Björn, J. F. Bornman, S. D. Flint, G. Kulandaivelu, A. H. Teramura and M. Tevini, Effects of increased solar ultraviolet radiation on terrestrial ecosystems, J. Photochem. Photobiol., B 1998, 46, 40–52.

    Article  CAS  Google Scholar 

  3. D.-P. Häder, H. D. Kumar, S. C. Smith and R. C. Worrest, Effects on aquatic ecosystems, J. Photochem. Photobiol., B 1998, 46, 53–68.

    Article  Google Scholar 

  4. J. Longstreth, F. R. de Gruijl, M. L. Kripke, S. Abseck, F. Arnold, H. I. Slaper, G. Velders, Y. Takizawa and J. C. van der Leun, Health risks, J. Photochem. Photobiol., B 1998, 46, 20–39.

    Article  CAS  Google Scholar 

  5. A. E. Stapleton, Ultraviolet radiation and plants: burning questions, Plant Cell 1992, 4, 1353–1358.

    Article  PubMed  PubMed Central  Google Scholar 

  6. B. R. Jordan, The effects of ultraviolet-B radiation on plants: a molecular perspective, Adv. Bot. Res. 1996, 22, 97–162.

    Article  CAS  Google Scholar 

  7. A. Quesada and W. F. Vincent, Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation, Eur. J. Phycol. 1997, 32, 335–342.

    Article  Google Scholar 

  8. M. J. Eriksson and A. K. Clarke, The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942, J. Bacteriol. 1996, 178, 4839–4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. K. Ladha and H. D. Kumar, Variability of nitrogen fixation in some isolates of Nostoc linckia, Z. Allg. Mikrobiol. 1977, 17, 593–598.

    Article  CAS  PubMed  Google Scholar 

  10. K. J. Reddy, J. B. Haskell, D. M. Sherman and L. A. Sherman, Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece, J. Bacteriol. 1993, 175, 1284–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. I. Kostiaev, Molecular nitrogen fixation and photosynthesis in cyanobacteria in red light, Mikrobiologia 1980, 49, 349–351.

    Google Scholar 

  12. T. Thiel and B. Pratte, Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413, J. Bacteriol. 2001, 183, 280–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. I. Park, S. Sandstrom, P. Gustafsson and G. Oquist, Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation, Mol. Microbiol. 1999, 32, 123–129.

    Article  CAS  PubMed  Google Scholar 

  14. H. Nakamoto, N. Tanaka and N. Ishikawa, A novel heat shock protein plays an important role in thermal stress management in cyanobacteria, J. Biol. Chem. 2001, 276, 25088–25095.

    Article  CAS  PubMed  Google Scholar 

  15. H. Takeyama, H. Nakayama and T. Matsunaga, Salinity-regulated replication of the endogenous plasmid pSY10 from the marine cyanobacterium Synechococcus sp, Appl. Biochem. Biotechnol. 2000, 84–86, 447–453.

    Article  PubMed  Google Scholar 

  16. U. Nubel, F. Garcia-Pichel, E. Clavero and G. Muyzer, Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient, Environ. Microbiol. 2000, 2, 217–226.

    Article  CAS  PubMed  Google Scholar 

  17. H. Wada, Z. Gombos and N. Murata, Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation, Nature 1990, 347, 200–203.

    Article  CAS  PubMed  Google Scholar 

  18. D. J. Thomas, J. B. Thomas, S. D. Prier, N. E. Nasso and S. K. Herbert, Iron superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC7942, Plant Physiol. 1999, 120, 275–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. J. Thomas, T. J. Avenson, J. B. Thomas and S. K. Herbert, A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon, Plant Physiol. 1998, 116, 1593–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Mittler, E. Tel-Or, Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC 7942, Free Radical Res. Commun. 1991, 12–13, 845–850.

    Article  Google Scholar 

  21. M. Ehling-Schulz and S. Scherer, UV protection in cyanobacteria, Eur. J. Phycol. 1999, 34, 329–338.

    Article  Google Scholar 

  22. R. P. Sinha, M. Klisch, A. Gröniger and D.-P. Häder, Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae, J. Photochem. Photobiol., B 1998, 47, 83–94.

    Article  CAS  Google Scholar 

  23. B. Halliwell and J. M. C. Gutteridge (Eds.), Free Radicals in Biology and Medicine, 3rd edn., Oxford University Press, Oxford, 1999.

    Google Scholar 

  24. K. K. Niyogi, Photoprotection revisited: genetics and molecular approaches, Annu. Rev. Plant Physiol. 1999, 50, 333–359.

    Article  CAS  Google Scholar 

  25. E. Hideg, C. Spetea and I. Vass, Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy, Photosynth. Res. 1994, 39, 191–199.

    Article  CAS  PubMed  Google Scholar 

  26. F. Navari-Izzo, C. Pinzino, M. F. Quartacci and C. L. M. Sgherri, Superoxide and hydroxyl radical generation and superoxide dismutase in PSII membrane fragments from wheat, Free Radical Res. 1999, 31, 3–9.

    Article  Google Scholar 

  27. T. Kalai, E. Hideg, I. Vass and K. Hideg, Double (fluorescent and spin) sensors for detection of reactive oxygen species in the thylakoid membrane, Free Radical Biol. Med. 1998, 24, 649–652.

    Article  CAS  Google Scholar 

  28. E. E. Hideg, K. Ogawa, T. Kalai and K. Hideg, Singlet oxygen imaging in Arabidopsis thaliana leaves under photoinhibition by excess photosynthetically active radiation, Physiol. Plant 2001, 112, 10–14.

    Article  CAS  PubMed  Google Scholar 

  29. E. Hideg, I. Vass, T. Kalai and K. Hideg, Singlet oxygen detection with sterically hindered amine derivatives in plants under light stress, Methods Enzymol. 2000, 319, 77–85.

    Article  CAS  PubMed  Google Scholar 

  30. E. Hideg, T. Kalai, K. Hideg and I. Vass, Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves, Biochemistry 1998, 37, 11405–11411.

    Article  CAS  PubMed  Google Scholar 

  31. J. P. Crow, Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species, Nitric Oxide 1997, 1, 145–157.

    Article  CAS  PubMed  Google Scholar 

  32. D. M. van Reyk, N. J. King, M. C. Dinauer and N. H. Hunt, The intracellular oxidation of 2′,7′-dichlorofluorescin in murine T lymphocytes, Free Radical Biol. Med. 2001, 30, 82–88.

    Article  Google Scholar 

  33. I. Savini, I. D’Angelo, M. Ranalli, G. Melinno and L. Avigliano, Ascorbic acid maintenance in HaCaT cells prevents radical formation and apoptosis by UV-B, Free Radical Biol. Med. 1999, 26, 1172–1180.

    Article  CAS  Google Scholar 

  34. J. Wolfe, C. J. Hutcheon, V. J. Higgins and R. K. Cameron, A functional gene-for-gene interaction is required for the production of an oxidative burst in response to infection with avirulent Pseudomonas syringae pv. tomato in Arabidopsis thaliana, Physiol. Mol. Plant Pathol. 2000, 56, 253–261.

    Article  CAS  Google Scholar 

  35. D. P. Maxwell, Y. Wang and L. McIntosh, The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 8271–8276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. V. Irihimovitch and M. Shapira, Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast, J. Biol. Chem. 2000, 275, 16289–16295.

    Article  CAS  PubMed  Google Scholar 

  37. D. Kim, A. Nakamura, T. Okamoto, N. Komatsu, T. Oda, T. Iida, A. Ishimatsu and T. Muramatsu, Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: possible involvement of NAD(P)H oxidase, Biochim. Biophys. Acta 2000, 1524, 220–227.

    Article  CAS  PubMed  Google Scholar 

  38. H. Yasui and H. Sakurai, Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA, Biochem. Biophys. Res. Commun. 2000, 269, 131–136.

    Article  CAS  PubMed  Google Scholar 

  39. H. Yamasaki and Y. Sakihama, Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species, FEBS Lett. 2000, 468, 89–92.

    Article  CAS  PubMed  Google Scholar 

  40. P. L. Lesser, Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans, Mar. Ecol.: Prog. Ser. 1996, 132, 287–297.

    Article  CAS  Google Scholar 

  41. W. Jakubowski and G. Bartosz, 2,7-Dichlorofluorescein oxidation and reactive oxygen species: what does it measure?, Cell Biol. Int. 2000, 24, 757–760.

    Article  CAS  PubMed  Google Scholar 

  42. E. Marchesi, C. Rota, Y. C. Fann, C. F. Chignell and R. P. Mason, Photoreduction of the fluorescent dye 2′-7′-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implications for oxidative stress measurements, Free Radical Biol. Med. 1999, 26, 148–161.

    Article  CAS  Google Scholar 

  43. S. Burow and G. Valet, Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichloroflorescein (DCF), Eur. J. Cell Biol. 1987, 43, 128–133.

    CAS  PubMed  Google Scholar 

  44. C. Rota, C. F. Chignell and R. P. Mason, Evidence for free radical formation during the oxidation of 2′-7′- dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements, Free Radical Biol. Med. 1999, 27, 873–881.

    Article  CAS  Google Scholar 

  45. C. Alpaslan, A. Bilgihan, G. H. Alpaslan, B. Guner, M. Ozgur Yis and D. Erbas, Effect of arthrocentesis and sodium hyaluronate injection on nitrite, nitrate, and thiobarbituric acid-reactive substance levels in the synovial fluid, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 686–690.

    Article  CAS  PubMed  Google Scholar 

  46. W. Korytowski, M. Zareba and A. W. Girotti, Nitric oxide inhibition of free radical-mediated cholesterol peroxidation in liposomal membranes, Biochemistry 2000, 39, 6918–6928.

    Article  CAS  PubMed  Google Scholar 

  47. H. Jacobi, M. L. Hinrichsen, D. Wess and I. Witte, Induction of lipid peroxidation in human fibroblasts by the antioxidant propyl gallate in combination with copper(ii), Toxicol. Lett. 1999, 110, 183–190.

    Article  CAS  PubMed  Google Scholar 

  48. C. S. Yang, P. J. Tsai, J. P. Wu, N. N. Lin, S. T. Chou and J. S. Kuo, Evaluation of extracellular lipid peroxidation in brain cortex of anaesthetized rats by microdialysis perfusion and high-performance liquid chromatography with fluorimetric detection, J. Chromatogr., B: Biomed. Sci. Appl. 1997, 693, 257–263.

    Article  CAS  Google Scholar 

  49. D. Hagege, A. Nouvelot, J. Boucaud and T. Gasper, Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference, Phytochem. Anal. 1990, 1, 86–89.

    Article  Google Scholar 

  50. A. H. S. Mackerness, S. L. Surplus, P. Blake, C. F. John, V. Buchanan-Wollaston, B. R. Jordan and B. Thomas, Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species, Plant Cell Environ. 1999, 22, 1413–1423.

    Article  CAS  Google Scholar 

  51. A. H. S. Mackerness, S. L. Surplus, B. R. Jordan and B. Thomas, Effects of supplementary ultraviolet-B radiation on photosynthetic transcripts at different stages of leaf development and light levels in pea (Pisum sativum L.): Role of active oxygen species and antioxidant enzymes, Photochem. Photobiol. 1998, 68, 88–96.

    Article  CAS  Google Scholar 

  52. H. C. Birnboim and J. J. Jevcak, Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation, Cancer Res. 1981, 41, 1889–1892.

    CAS  PubMed  Google Scholar 

  53. C. Baumstark-Khan, U. Hentschel, Y. Nikandrova, J. Krug and G. Horneck, Fluorometric analysis of DNA unwinding (FADU) as a method for detecting repair-induced DNA strand breaks in UV-irradiated mammalian cells, Photochem. Photobiol. 2000, 72, 477–484.

    Article  CAS  PubMed  Google Scholar 

  54. C. Baumstark-Khan, Alkaline elution versus fluorescence analysis of DNA unwinding, Methods Enzymol. 1994, 234, 88–102.

    Article  CAS  PubMed  Google Scholar 

  55. C. Baumstark-Khan, U. Griesenbach and H. Rink, Comparison of DNA strand break induction in CHO cells measured by alkaline elution and by fluorometric analysis of DNA unwinding (FADU), Free Radical Res. Commun. 1992, 16, 381–389.

    Article  CAS  Google Scholar 

  56. M. K. Shih and M. L. Hu, UVA-induced oxidative damage to rat liver nuclei: reduction of iron ions and the relationship between lipid peroxidation and DNA damage, Mutat. Res. 1999, 438, 125–132.

    Article  CAS  PubMed  Google Scholar 

  57. Y. F. Wang and M. L. Hu, Use of rat liver slices for the study of oxidative DNA damage in comparison with isolated rat liver nuclei and HepG2 human hepatoma cells, Food Chem. Toxicol. 2000, 38, 451–458.

    Article  CAS  PubMed  Google Scholar 

  58. M. C. Chicca, C. Nesti, M. Muzzoli, P. Pasetti and S. Pinamonti, Correlation between age and DNA damage detected by FADU in human peripheral blood lymphocytes, Mutat. Res. 1996, 316, 201–208.

    Article  CAS  PubMed  Google Scholar 

  59. A. D. Ho, E. Seither, D. D. Ma and H. G. Prentice, Mitozantrone-induced toxicity and DNA strand breaks in leukaemic cells, Br. J. Haematol. 1987, 65, 51–55.

    Article  CAS  PubMed  Google Scholar 

  60. T. Ogiu, H. Fukami and M. Nishimura, DNA strand breaks and death of thymocytes induced by N-methyl-N-nitrosourea, J. Cancer Res. Clin. Oncol. 1992, 118, 23–29.

    Article  CAS  PubMed  Google Scholar 

  61. L. A. Paul, A. M. Fulton and G. H. Heppner, Reactive oxygen-mediated damage to murine mammary tumor cells, Mutat. Res. 1989, 215, 223–234.

    Article  CAS  PubMed  Google Scholar 

  62. C. H. Foyer, M. Lelandais and K. J. Kunert, Photooxidative stress in plants, Physiol. Plant 1994, 92, 696–717.

    Article  CAS  Google Scholar 

  63. C. H. Foyer, P. Descourvieres and K. J. Kunert, Protection against oxygen radicals: an important defence mechanism studied in transgenic plants, Plant Cell Environ. 1994, 17, 507–523.

    Article  CAS  Google Scholar 

  64. L. A. Franklin and R. M. Forster, The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology, Eur. J. Phycol. 1997, 32, 207–232.

    Google Scholar 

  65. J. G. Scandalios, Oxidative stress and defense mechanisms in plants: introduction, Free Radical Biol. Med. 1997, 23, 471–472.

    Article  CAS  Google Scholar 

  66. A. H. S. Mackerness, P. J. Butt, B. R. Jordan and B. Thomas, Amelioration of ultraviolet-B-induced down-regulation of mRNA levels for chloroplast proteins, by high irradiance, J. Plant Physiol. 1996, 148, 100–106.

    Article  CAS  Google Scholar 

  67. B. R. Jordan, J. He, W. S. Chow and J. M. Anderson, Changes in mRNA levels and polypeptide subunits of ribulose bisphosphate carboxylase in response to supplemental UV-B radiation, Plant Cell Environ. 1992, 15, 91–98.

    Article  CAS  Google Scholar 

  68. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol. 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  69. J. R. Durrant, L. B. Giorgi, J. Barber, D. R. Klug and G. Porter, Characterization of triplet states in isolated Photosystem II reaction centers: Oxygen quenching as a mechanisms of photodamage, Biochim. Biophys. Acta 1990, 1017, 167–175.

    Article  CAS  Google Scholar 

  70. K. Asada, Production and action of active oxygen species in photosynthetic tissues, in Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants, C. H. Foyer and P. M. Mullineaux (Eds.), CRC Press, Boca Raton, FL., 1994, pp 77–104.

    Google Scholar 

  71. H. F. Bienfait and F. van der Mark, Phytoferritin and its role in iron metabolism, in Metals and Micronutrients—Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpaint (Eds.), Academic Press, London, 1983, pp 310–351.

    Google Scholar 

  72. A. Price and G. A. Hendry, Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals, Plant Cell Environ. 1991, 14, 477–484.

    Article  CAS  Google Scholar 

  73. J. F. Moran, M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R. Klucas and P. Aparicio-Tejo, Drought induces oxidative stress in pea plants, Planta 1994, 194, 346–352.

    Article  CAS  Google Scholar 

  74. C. J. Norbury and I. D. Hickson, Cellular responses to DNA damage, Annu. Rev. Pharmacol. Toxicol. 2001, 41, 367–401.

    Article  CAS  PubMed  Google Scholar 

  75. W. el-Adhami, S. Daly and P. R. Stewart, Biochemical studies on the lethal effects of solar and artificial ultraviolet radiation on Staphylococcus aureus, Arch. Microbiol. 1994, 161, 82–87.

    Article  CAS  PubMed  Google Scholar 

  76. T. A. Slieman and W. L. Nicholson, Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA, Appl. Environ. Microbiol. 2000, 66, 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. T. Sato, N. Oku, E. Iida, K. Kawaguchi, K. Yamanaka, T. Mori and S. Okada, Differential effect of UV-B and UV-C on DNA damage in L-132 cells, Biol. Pharm. Bull. 1996, 19, 721–725.

    Article  CAS  PubMed  Google Scholar 

  78. R. E. Lloyd, R. A. Larson, T. L. Adair and R. W. Tuveson, Cu(ii) sensitizes pBR322 plasmid DNA to inactivation by UV-B (280–315 nm), Photochem. Photobiol. 1993, 57, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  79. N. J. Kleiman, R. R. Wang and A. Spector, Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells, Curr. Eye Res. 1990, 9, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  80. V. N. Reddy, F. J. Giblin, L. R. Lin and B. Chakrapani, The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium, Invest. Ophthalmol. Visual Sci. 1998, 39, 344–350.

    CAS  Google Scholar 

  81. M. K. Blakefield and D. O. Harris, Delay of cell differentiation in Anabaena aequalis caused by UV-B radiation and the role of photoreactivation and excision repair, Photochem. Photobiol. 1994, 59, 204–208.

    Article  CAS  PubMed  Google Scholar 

  82. J. Kemmink, A. P. Eker, G. A. van der Marel, J. H. van Boom and R. Kaptein, Photoreactivation of the thymine dimer containing DNA octamer d(GCGTTGCG).d(CGCAACGC) by the photoreactivating enzyme from Anacystis nidulans, J. Photochem. Photobiol., B 1988, 1, 323–328.

    Article  CAS  Google Scholar 

  83. N. Tuteja, M. B. Singh, M. K. Misra, P. L. Bhalla and R. Tuteja, Molecular mechanisms of DNA damage and repair: progress in plants, Crit. Rev. Biochem. Mol. Biol. 2001, 36, 337–397.

    Article  CAS  PubMed  Google Scholar 

  84. P. L. Conklin, Recent advances in the role and biosynthesis of ascorbic acid in plants, Plant Cell Environ. 2001, 24, 383–394.

    Article  CAS  Google Scholar 

  85. N. Smirnoff, Ascorbate biosynthesis and function in photoprotection, Philos. Trans. R. Soc. London, Ser. B 2000, 355, 1455–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. N. Smirnoff and G. L. Wheeler, Ascorbic acid in plants: biosynthesis and function, Crit. Rev. Biochem. Mol. Biol. 2000, 35, 291–314.

    Article  CAS  PubMed  Google Scholar 

  87. E. Tel-Or, M. Huflejt and L. Packer, The role of glutathione and ascorbate in hydroperoxide removal in cyanobacteria, Biochem. Biophys. Res. Commun. 1985, 132, 533–539.

    Article  CAS  PubMed  Google Scholar 

  88. E. Tel-Or, M. E. Huflejt and L. Packer, Hydroperoxide metabolism in cyanobacteria, Arch. Biochem. Biophys. 1986, 246, 396–402.

    Article  CAS  PubMed  Google Scholar 

  89. O. M. Lardinois, Reactions of bovine liver catalase with superoxide radicals and hydrogen peroxide, Free Radical Res. 1995, 22, 251–274.

    Article  CAS  Google Scholar 

  90. R. Boldt and J. G. Scandalios, Influence of UV-light on the expression of the Cat2 and Cat3 catalase genes in maize, Free Radical Biol. Med. 1997, 23, 505–514.

    Article  CAS  Google Scholar 

  91. W. C. Dunlap and Y. Yamamoto, Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine, Comp. Biochem. Physiol., B: Biochem. Mol. Biol. 1995, 112, 105–114.

    Article  Google Scholar 

  92. W. C. Dunlap, K. Masaki, Y. Yamamoto, R. M. Larsen and I. Karube, A novel antioxidant derived from seaweed, in Recent Developments in Marine Biotechnology, Y. Le Gal and H. Halvorson (Eds.), Plenum Press, New York, 1998, pp. 33–35.

    Chapter  Google Scholar 

  93. C. Pourzand and R. M. Tyrrell, Apoptosis, the role of oxidative stress and the example of solar UV radiation, Photochem. Photobiol. 1999, 70, 380–390.

    Article  CAS  PubMed  Google Scholar 

  94. L. Penarrubia and J. Moreno, Increased susceptibility of ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolytic degradation caused by oxidation treatments, Arch. Biochem. Biophys. 1990, 281, 319–323.

    Article  CAS  PubMed  Google Scholar 

  95. C. Garcia-Ferris and J. Moreno, Redox regulation of enzymatic activity and proteolytic susceptibility of ribulose-1,5-bisphosphate carboxylase/oxygenase from Euglena gracilis, Photosynth. Res. 1993, 35, 55–66.

    Article  CAS  PubMed  Google Scholar 

  96. B. Shirkey, D. P. Kovarcik, D. J. Wright, G. Wilmoth, T. F. Prickett, R. F. Helm, E. M. Gregory and M. Potts, Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation, J. Bacteriol. 2000, 182, 189–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. K. Yoshimura, Y. Yabuta, T. Ishikawa and S. Shigeoka, Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses, Plant Physiol. 2000, 123, 223–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Y. H. Li, Clinical observation of the superoxide dismutase (SOD) and lipid peroxide (LPO) changes in oral-maxillofacial surgical patients, Zhonghua Kouqiang Yixue Zazhi 1992, 27, 209–211–255–256.

    CAS  PubMed  Google Scholar 

  99. I. Vass, D. Kirilovsky and A. L. Etienne, UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803, Biochemistry 1999, 38, 12786–12794.

    Article  CAS  PubMed  Google Scholar 

  100. I. Vass, D. Kirilovsky, I. Perewoska, Z. Mate, F. Nagy and A. L. Etienne, UV-B radiation induced exchange of the D1 reaction centre subunits produced from the psbA2 and psbA3 genes in the Cyanobacterium Synechocystis sp. PCC 6803, Eur. J. Biochem. 2000, 267, 2640–2648.

    Article  CAS  PubMed  Google Scholar 

  101. D. J. Hofmann, Recovery of Antarctic ozone hole, Nature 1996, 384, 222–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat-P. Häder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YY., Häder, DP. Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1, 729–736 (2002). https://doi.org/10.1039/b110365m

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b110365m

Navigation