Skip to main content

Advertisement

Log in

Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) can result in both types of cell death, apoptosis or necrosis. Several steps in the induction and execution of apoptosis depend on ATP and the intracellular ATP level has been shown to be one determinant in whether apoptosis or necrosis occurs. Therefore, photochemical damage of cellular targets involved in energy supply might play a crucial role in the mode of cell death being executed. The present study is aimed at the characterization of changes in cellular energy supply and the associated cell death modes in response to PDT. Using the human epidermoid carcinoma cell line A431 and aluminium(iii) phthalocyanine tetrasulfonate chloride (2.5 μM) as a photosensitizer, we studied the changes in mitochondrial function and intracellular ATP level after irradiation with different light doses. Employing assays for caspase-3 activation and nuclear fragmentation, 50of the cells were found to undergo apoptosis after irradiation between 2.5 to 3.5 J cm−2 while the remainder died by necrosis. At higher light doses (>6 J cm−2), neither caspase-3 activation nor nuclear fragmentation was observed and this suggests that these cells died exclusively by necrosis. Necrotic cell death was also associated with a rapid decline in mitochondrial activity and intracellular ATP. By contrast, with apoptosis the loss of mitochondrial function was delayed and the ATP level was maintained at near control levels for up to eight hours which was far beyond the onset of morphological changes. These data suggest that, depending on the light dose applied, both, necrosis as well as apoptosis can be induced with AlPcS4 mediated PDT and that photodamage in energy supplying cellular targets may influence the mode of cell death. Further, it is speculated that cells undergoing apoptosis in response to PDT might maintain a high ATP level long enough to complete the apoptotic program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, Photodynamic therapy, Photochem. Photobiol., 1993, 58(6), 895–900.

    Article  CAS  Google Scholar 

  2. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol, 1992, 55(1), 145–157.

    Article  CAS  Google Scholar 

  3. A. Strasser, L. O’Connor and V. M. Dixit, Apoptosis signaling, Annu. Rev. Biochem., 2000, 69, 217–245.

    Article  CAS  Google Scholar 

  4. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1(1), 1–21.

    Article  CAS  Google Scholar 

  5. I. Reiter, B. Krammer and G. Schwamberger, Cutting edge: differential effect of apoptotic versus necrotic tumor cells on macrophage antitumor activities, J. Immunol., 1999, 163(4), 1730–2.

    CAS  PubMed  Google Scholar 

  6. V. A. Fadok, D. L. Bratton, L. Guthrie and P. M. Henson, Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases, J. Immunol., 2001, 166(11), 6847–6854.

    Article  CAS  Google Scholar 

  7. B. Sauter, M. L. Albert, L. Francisco, M. Larsson, S. Somersan and N. Bhardwaj, Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells, J. Exp. Med., 2000, 191(3), 423–434.

    Article  CAS  Google Scholar 

  8. A. C. Moor, Signaling pathways in cell death and survival after photodynamic therapy, J. Photochem. Photobiol. B, 2000, 57(1), 1–13.

    Article  CAS  Google Scholar 

  9. G. M. Malham, R. J Thomsen, G. J. Finlay and B. C. Baguley, Subcellular distribution and photocytotoxicity of aluminium phthalocyanines and haematoporphyrin derivative in cultured human meningioma cells, Br. J. Neurosurg., 1996, 10(1), 51–57.

    Article  CAS  Google Scholar 

  10. L. Wyld, M. W. Reed and N. J. Brown, Differential cell death response to photodynamic therapy is dependent on dose and cell type, Br. J. Cancer, 2001, 84(10), 1384–1386.

    Article  CAS  Google Scholar 

  11. A. Villanueva, V. Dominguez, S. Polo, V. D. Vendrell, C. Sanz, T. M. Canete, A. Juarranz and J. C. Stockert, Photokilling mechanisms induced by zinc(II)-phthalocyanine on cultured tumor cells, Oncol. Res., 1999, 11(10), 447–453.

    CAS  PubMed  Google Scholar 

  12. G. Lavie, C. Kaplinsky, A. Toren, I. Aizman, D. Meruelo, Y. Mazur and M. Mandel, A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy, Br. J. Cancer, 1999, 79(3–4), 423–432.

    Article  CAS  Google Scholar 

  13. Y. Luo and D. Kessel, Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine, Photochem. Photobiol., 1997, 66(4), 479–483.

    Article  CAS  Google Scholar 

  14. B. B. Noodt, G. H. Rodal, M. Wainwright, Q. Peng, R. Horobin, J. M. Nesland and K. Berg, Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells, Int. J. Cancer, 1998, 75(6), 941–948.

    Article  CAS  Google Scholar 

  15. C. Richter, M. Schweizer, A. Cossarizza and C. Franceschi, Control of apoptosis by the cellular ATP level, FEBS Lett., 1996, 378(2), 107–110.

    Article  CAS  Google Scholar 

  16. P. Nicotera, M. Leist and E. FerrandoMay, Intracellular ATP, a switch in the decision between apoptosis and necrosis, Toxicol. Lett., 1998, 103, 139–142.

    Article  Google Scholar 

  17. M. Leist, B. Single, A. F. Castoldi, S. Kuhnle and P. Nicotera, Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis, J. Exp. Med., 1997, 185(8), 1481–1486.

    Article  CAS  Google Scholar 

  18. Y. Eguchi, S. Shimizu and Y. Tsujimoto, Intracellular ATP levels determine cell death fate by apoptosis or necrosis, Cancer Res., 1997, 57(10), 1835–1840.

    CAS  PubMed  Google Scholar 

  19. Y. Hu, M. A. Benedict, L. Ding and G. Nunez, Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis, EMBO J., 1999, 18(13), 3586–3595.

    Article  CAS  Google Scholar 

  20. Y. Eguchi, A. Srinivasan, K. J. Tomaselli, S. Shimizu and Y. Tsujimoto, ATP-dependent steps in apoptotic signal transduction, Cancer Res., 1999, 59(9), 2174–2181.

    CAS  PubMed  Google Scholar 

  21. G. E. Kass, J. E. Eriksson, M. Weis, S. Orrenius and S. C. Chow, Chromatin condensation during apoptosis requires ATP, Biochem. J., 1996, 318(Pt 3), 749–752.

    Article  CAS  Google Scholar 

  22. A. Saleh, S. M. Srinivasula, S. Acharya, R. Fishel and E. S. Alnemri, Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation, J. Biol. Chem., 1999, 274(25), 17941–17945.

    Article  CAS  Google Scholar 

  23. D. Kessel and Y. Luo, Mitochondrial photodamage and PDT-induced apoptosis, J. Photochem. Photobiol. B, 1998, 42(2), 89–95.

    Article  CAS  Google Scholar 

  24. V. Kirveliene, L. Prasmickaite, J. Kadziauskas, R. Bonnett, B. D. Djelal and B. Juodka, Post-exposure processes in Temoporfin-photosensitized cells in vitro: reliance on energy metabolism, J. Photochem. Photobiol. B, 1997, 41(1–2), 173–180.

    Article  Google Scholar 

  25. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65(1–2), 55–63.

    Article  CAS  Google Scholar 

  26. D. W. Nicholson, Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ., 1999, 6(11), 1028–1042.

    Article  CAS  Google Scholar 

  27. W. C. Earnshaw, L. M. Martins and S. H. Kaufmann, Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem., 1999, 68, 383–424.

    Article  CAS  Google Scholar 

  28. D. J. Ball, S. Mayhew, D. I. Vernon, M. Griffin and S. B. Brown, Decreased efficiency of trypsinization of cells following photodynamic therapy: evaluation of a role for tissue transglutaminase, Photochem. Photobiol., 2001, 73(1), 47–53.

    Article  CAS  Google Scholar 

  29. H. A. Neufeld, R. D. Towner and J. Pace, A rapid method for determining ATP by the firefly luciferin-luciferase system, Experientia, 1975, 31(3), 391–392.

    Article  CAS  Google Scholar 

  30. G. Marcaida, M. D. Minana, S. Grisolia and V. Felipo, Determination of intracellular ATP in primary cultures of neurons, Brain Res. Brain Res. Protoc., 1997, 1(1), 75–78.

    Article  CAS  Google Scholar 

  31. A. Ruck, K. Heckelsmiller, R. Kaufmann, N. Grossman, E. Haseroth and N. Akgun, Light-induced apoptosis involves a defined sequence of cytoplasmic and nuclear calcium release in AlPcS4-photosensitized rat bladder RR 1022 epithelial cells, Photochem. Photobiol., 2000, 72(2), 210–216.

    Article  CAS  Google Scholar 

  32. G. Jori and C. Fabris, Relative contributions of apoptosis and random necrosis in tumour response to photodynamic therapy: effect of the chemical structure of Zn(II)-phthalocyanines, J. Photochem. Photobiol. B, 1998, 43(3), 181–185.

    Article  CAS  Google Scholar 

  33. J. Cai, J. Yang and D. Jones, Mitochondrial control of apoptosis: the role of cytochrome c, Biochim. Biophys. Acta, 1998, 1366(1–2), 139–149.

    Article  CAS  Google Scholar 

  34. S. A. Susin, H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger and G. Kroemer, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature, 1999, 397(6718), 441–446.

    Article  CAS  Google Scholar 

  35. D. Kulms and T. Schwarz, Molecular mechanisms of UV-induced apoptosis, Photodermatol. Photoimmunol. Photomed., 2000, 16(5), 195–201.

    Article  CAS  Google Scholar 

  36. C. A. Belmokhtar, J. Hillion, E. Segal-Bendirdjian, Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms, Oncogene, 2001, 20(26), 3354–3362.

    Article  CAS  Google Scholar 

  37. R. Bertrand, E. Solary, P. O’Connor, K. W. Kohn and Y. Pommier, Induction of a common pathway of apoptosis by staurosporine, Exp. Cell Res., 1994, 211(2), 314–321.

    Article  CAS  Google Scholar 

  38. Z. Han, P. Pantazis, T. S. Lange, J. H. Wyche and E. A. Hendrickson, The staurosporine analog, Ro-31-8220, induces apoptosis independently of its ability to inhibit protein kinase C, Cell Death Differ., 2000, 7(6), 521–530.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaetzer, K., Kiesslich, T., Krammer, B. et al. Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 1, 172–177 (2002). https://doi.org/10.1039/b108816e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b108816e

Navigation